Junjie Jia , Jennifer A.J. Dungait , Guirui Yu , Tao Cui , Yang Gao
{"title":"Nutrient enrichment and climate warming drive carbon production of global lake ecosystems","authors":"Junjie Jia , Jennifer A.J. Dungait , Guirui Yu , Tao Cui , Yang Gao","doi":"10.1016/j.earscirev.2024.104968","DOIUrl":null,"url":null,"abstract":"<div><div>Underestimating the magnitude of global lake carbon (C) production undermines the evaluation of the terrestrial ecosystem's C sink, which is key to achieving global C balance. Quantifying the potential response of lake net ecosystem productivity (NEP) and associated C production capacity to human activities is critical for evaluating the Earth's C balance. Here, we reveal global spatiotemporal dynamics of lake C production over 20 years across different continents and climate zones, highlighting the role of anthropogenic activity as a driving mechanism. We estimated lake C production using phytoplankton primary productivity from the surface to the estimated euphotic depth (PP<sub>eu</sub>) based on chlorophyll-<em>a</em> (Chl-<em>a</em>) content. Economic development has significantly contributed to increases in global lake temperatures and total phosphorus concentrations. This has stimulated increases in annual lake C production, rising from 1.53 Pg C yr<sup>−1</sup> in the 2000s to 1.95 Pg C yr<sup>−1</sup> in the 2010s. Concurrently, lakes with higher total phosphorus (TP) concentrations (≥ 0.6 mg L<sup>−1</sup>) exhibited significantly greater PP<sub>eu</sub> values of 3.16 g C m<sup>−2</sup> d<sup>−1</sup>, compared to lakes with lower TP concentrations (≤ 0.1 mg L<sup>−1</sup>), which showed 1.50 g C m<sup>−2</sup> d<sup>−1</sup>. Although lake water TP concentrations can reach up to 1 mg L<sup>−1</sup>, the critical TP concentration (TP<sub>c</sub>) at which global lake PP<sub>eu</sub> peaks at 4 to 6 g C m<sup>−2</sup> d<sup>−1</sup> is approximately 0.5 mg L<sup>−1</sup>. Exploiting the C sink potential of lakes requires understanding the environmental factors that control metabolic processes; however, there is a lack of effective monitoring and evaluation of the highly heterogeneous and diverse autotrophic C fixation processes in inland waters.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104968"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224002964","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Underestimating the magnitude of global lake carbon (C) production undermines the evaluation of the terrestrial ecosystem's C sink, which is key to achieving global C balance. Quantifying the potential response of lake net ecosystem productivity (NEP) and associated C production capacity to human activities is critical for evaluating the Earth's C balance. Here, we reveal global spatiotemporal dynamics of lake C production over 20 years across different continents and climate zones, highlighting the role of anthropogenic activity as a driving mechanism. We estimated lake C production using phytoplankton primary productivity from the surface to the estimated euphotic depth (PPeu) based on chlorophyll-a (Chl-a) content. Economic development has significantly contributed to increases in global lake temperatures and total phosphorus concentrations. This has stimulated increases in annual lake C production, rising from 1.53 Pg C yr−1 in the 2000s to 1.95 Pg C yr−1 in the 2010s. Concurrently, lakes with higher total phosphorus (TP) concentrations (≥ 0.6 mg L−1) exhibited significantly greater PPeu values of 3.16 g C m−2 d−1, compared to lakes with lower TP concentrations (≤ 0.1 mg L−1), which showed 1.50 g C m−2 d−1. Although lake water TP concentrations can reach up to 1 mg L−1, the critical TP concentration (TPc) at which global lake PPeu peaks at 4 to 6 g C m−2 d−1 is approximately 0.5 mg L−1. Exploiting the C sink potential of lakes requires understanding the environmental factors that control metabolic processes; however, there is a lack of effective monitoring and evaluation of the highly heterogeneous and diverse autotrophic C fixation processes in inland waters.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.