Sonochemical preparation of powerful S-scheme Zr(HPO4)2/g-C3N4 heterojunction for photocatalytic degradation of rhodamine B under natural solar radiations
{"title":"Sonochemical preparation of powerful S-scheme Zr(HPO4)2/g-C3N4 heterojunction for photocatalytic degradation of rhodamine B under natural solar radiations","authors":"","doi":"10.1016/j.jpcs.2024.112392","DOIUrl":null,"url":null,"abstract":"<div><div>An effective Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunction was synthesized by sonochemical coupling of Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles as an oxidative photocatalyst [E<sub>VB</sub> = +3.0 eV] with g-C<sub>3</sub>N<sub>4</sub> nanosheets as an effective reductive photocatalyst [E<sub>CB</sub> = −1.25 eV] for photocatalytic degradation of rhodamine B dye under natural solar radiation of 1000 W power. The physicochemical properties of the as-synthesized heterojunctions were investigated by X-ray diffraction [XRD], N<sub>2</sub>-adsorption-desorption isotherm, diffuse reflectance spectrum [DRS], photoluminescence [PL], scanning electron microscope [SEM], X-ray photoelectron spectroscope [XPS], and high resolution transmission electron microscope [HRTEM]. The experimental results implied the agglomeration of Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> sheets which reduced the specific surface area of the solid specimen from 88 to 21 m<sup>2</sup>/g. The significant increase in the photocatalytic degradation rate of RhB dye with introducing Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles implied that Zr(HPO<sub>4</sub>)<sub>2</sub> plays a crucial role in reducing the band gap energy and remarkable increasing in the rate of electron-hole separation. The photocatalytic experiments implied that incorporation of 5 wt% Zr(HPO<sub>4</sub>)<sub>2</sub> on g-C<sub>3</sub>N<sub>4</sub> sheets destroyed 98 % of RhB dye during 3 h of light illumination with pseudo-first-order rate of 0.048 min<sup>−1</sup>. The remarkable enhancement in the photocatalytic performance of Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions was ascribed to successful generation of an effective S-scheme heterojunction with strong redox power, utilizing of both hydroxyl and superoxide radicals in the degradation process and limiting the electron-hole recombination rate. Based on scavenger experiments and terephthalic acid PL analysis, the S-scheme pathway was chosen as the proposed mechanism for photocatalytic charge transfer. The as-synthesized Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction with exceptional redox power is considered a novel candidate for destructing organic pollutants that exist in industrial wastewater.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An effective Zr(HPO4)2/g-C3N4 S-scheme heterojunction was synthesized by sonochemical coupling of Zr(HPO4)2 nanoparticles as an oxidative photocatalyst [EVB = +3.0 eV] with g-C3N4 nanosheets as an effective reductive photocatalyst [ECB = −1.25 eV] for photocatalytic degradation of rhodamine B dye under natural solar radiation of 1000 W power. The physicochemical properties of the as-synthesized heterojunctions were investigated by X-ray diffraction [XRD], N2-adsorption-desorption isotherm, diffuse reflectance spectrum [DRS], photoluminescence [PL], scanning electron microscope [SEM], X-ray photoelectron spectroscope [XPS], and high resolution transmission electron microscope [HRTEM]. The experimental results implied the agglomeration of Zr(HPO4)2 nanoparticles on g-C3N4 sheets which reduced the specific surface area of the solid specimen from 88 to 21 m2/g. The significant increase in the photocatalytic degradation rate of RhB dye with introducing Zr(HPO4)2 nanoparticles implied that Zr(HPO4)2 plays a crucial role in reducing the band gap energy and remarkable increasing in the rate of electron-hole separation. The photocatalytic experiments implied that incorporation of 5 wt% Zr(HPO4)2 on g-C3N4 sheets destroyed 98 % of RhB dye during 3 h of light illumination with pseudo-first-order rate of 0.048 min−1. The remarkable enhancement in the photocatalytic performance of Zr(HPO4)2/g-C3N4 heterojunctions was ascribed to successful generation of an effective S-scheme heterojunction with strong redox power, utilizing of both hydroxyl and superoxide radicals in the degradation process and limiting the electron-hole recombination rate. Based on scavenger experiments and terephthalic acid PL analysis, the S-scheme pathway was chosen as the proposed mechanism for photocatalytic charge transfer. The as-synthesized Zr(HPO4)2/g-C3N4 heterojunction with exceptional redox power is considered a novel candidate for destructing organic pollutants that exist in industrial wastewater.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.