Tropical cyclone track prediction model for multidimensional features and time differences series observation

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Peihao Yang , Guodong Ye
{"title":"Tropical cyclone track prediction model for multidimensional features and time differences series observation","authors":"Peihao Yang ,&nbsp;Guodong Ye","doi":"10.1016/j.aej.2024.10.090","DOIUrl":null,"url":null,"abstract":"<div><div>Tropical Cyclones (TCs) are highly destructive weather phenomena that can cause significant social and economic damage. With the development of meteorological monitoring technology and the updating of database, accurately forecasting the track of TC movement is one of the effective ways to minimize losses. However, traditional movement track forecasting methods suffer the disadvantages of low efficiency and low accuracy. To address the these problems, a novel Convolutional Neural Network-Temporal Convolutional Network (CNN-TCN) model based on Multidimensional Features and Time Difference Series (MT-CNN-TCN) is presented in this paper. First, different types of meteorological data are processed and then the feature differences between adjoining moments are extracted. Second, a two-branch structure based on Two Dimensional Convolutional Neural Network (2DCNN), 3DCNN and TCN is taken to effectively integrate different types of meteorological features to strengthen its forecasting effect. Finally, experiments are conducted using Northwest Pacific TC data from years 2000–2019. Test results show that the proposed model MT-CNN-TCN can perform well at all three forecast periods (12 h, 24 h, and 48 h), with a significant improvement in accuracy by 7 %, 13 %, and 16 % respectively, compared with current forecasting methods such as Long Short Term Memory (LSTM).</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 432-445"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012559","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical Cyclones (TCs) are highly destructive weather phenomena that can cause significant social and economic damage. With the development of meteorological monitoring technology and the updating of database, accurately forecasting the track of TC movement is one of the effective ways to minimize losses. However, traditional movement track forecasting methods suffer the disadvantages of low efficiency and low accuracy. To address the these problems, a novel Convolutional Neural Network-Temporal Convolutional Network (CNN-TCN) model based on Multidimensional Features and Time Difference Series (MT-CNN-TCN) is presented in this paper. First, different types of meteorological data are processed and then the feature differences between adjoining moments are extracted. Second, a two-branch structure based on Two Dimensional Convolutional Neural Network (2DCNN), 3DCNN and TCN is taken to effectively integrate different types of meteorological features to strengthen its forecasting effect. Finally, experiments are conducted using Northwest Pacific TC data from years 2000–2019. Test results show that the proposed model MT-CNN-TCN can perform well at all three forecast periods (12 h, 24 h, and 48 h), with a significant improvement in accuracy by 7 %, 13 %, and 16 % respectively, compared with current forecasting methods such as Long Short Term Memory (LSTM).
多维特征和时差序列观测的热带气旋路径预测模型
热带气旋(TC)是一种破坏性极强的天气现象,可造成重大的社会和经济损失。随着气象监测技术的发展和数据库的更新,准确预报热带气旋的移动路径是将损失降到最低的有效方法之一。然而,传统的移动轨迹预报方法存在效率低、精度低的缺点。针对这些问题,本文提出了一种基于多维特征和时差序列的新型卷积神经网络-时差卷积网络(CNN-TCN)模型(MT-CNN-TCN)。首先,对不同类型的气象数据进行处理,然后提取相邻时刻之间的特征差异。其次,采用基于二维卷积神经网络(2DCNN)、3DCNN 和 TCN 的双分支结构,有效整合不同类型的气象特征,以加强其预报效果。最后,利用西北太平洋 2000-2019 年的 TC 数据进行了试验。测试结果表明,所提出的 MT-CNN-TCN 模型在三个预报时段(12 h、24 h 和 48 h)均表现良好,与当前的预报方法(如长短期记忆(LSTM))相比,准确率分别显著提高了 7%、13% 和 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信