Pendulum attached to a vibrating point: Semi-analytical solution by optimal and modified homotopy perturbation method

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Tapas Roy , Aya Soqi , Dilip K. Maiti , Rania Wannan , Jihad Asad
{"title":"Pendulum attached to a vibrating point: Semi-analytical solution by optimal and modified homotopy perturbation method","authors":"Tapas Roy ,&nbsp;Aya Soqi ,&nbsp;Dilip K. Maiti ,&nbsp;Rania Wannan ,&nbsp;Jihad Asad","doi":"10.1016/j.aej.2024.10.086","DOIUrl":null,"url":null,"abstract":"<div><div>A simple pendulum of length <span><math><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow></math></span> and bob mass <span><math><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></math></span> attached to point <span><math><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></math></span> is considered and investigated. The point <span><math><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></math></span> is oscillating vertically according to the relation <span><math><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>o</mi></mrow></msub><mi>cos</mi><mi>Ω</mi><mi>t</mi><mo>)</mo></mrow></math></span>, where <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span> and <span><math><mrow><mi>Ω</mi><mspace></mspace></mrow></math></span>are amplitude and angular frequency of the external agent, respectively. The presence of time dependent oscillating term makes the governing equation is not solvable analytically. An attempt was to explore the application of optimal and modified homotopy perturbation method (OM-HPM) as a powerful semi-analytical tool for solving the oscillatory problem which exhibiting regular and irregular oscillation for some parameter set. Furthermore, the analytical expressions in series form, which is very close to the numerical solution of Runge-Kutta method is obtained. In addition, the analytical expression for the amplitude and the frequency of the oscillations for two cases: simple regular oscillation and the irregular oscillation is computed. Finally, the simplicity of the obtained solutions facilities a clear understanding, and the OM-HPM offer a robust and efficient analytical tool to obtain series based analytical solution for such kind of problems.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 396-403"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A simple pendulum of length (b) and bob mass (m) attached to point (O) is considered and investigated. The point (O) is oscillating vertically according to the relation (qocosΩt), where qo and Ωare amplitude and angular frequency of the external agent, respectively. The presence of time dependent oscillating term makes the governing equation is not solvable analytically. An attempt was to explore the application of optimal and modified homotopy perturbation method (OM-HPM) as a powerful semi-analytical tool for solving the oscillatory problem which exhibiting regular and irregular oscillation for some parameter set. Furthermore, the analytical expressions in series form, which is very close to the numerical solution of Runge-Kutta method is obtained. In addition, the analytical expression for the amplitude and the frequency of the oscillations for two cases: simple regular oscillation and the irregular oscillation is computed. Finally, the simplicity of the obtained solutions facilities a clear understanding, and the OM-HPM offer a robust and efficient analytical tool to obtain series based analytical solution for such kind of problems.
连接到振动点的摆:最优同调扰动法和修正同调扰动法的半解析解
考虑并研究了一个长度为 (b) 和摆锤质量为 (m) 的简单摆锤,该摆锤固定在点 (O) 上。点 (O) 根据关系式 (qocosΩt) 垂直摆动,其中 qo 和 Ω 分别为外部作用力的振幅和角频率。与时间相关的振荡项的存在使得控制方程无法通过分析求解。我们尝试探索应用优化和修正同调扰动法(OM-HPM)作为一种强大的半分析工具,来解决在某些参数设置下表现出规则和不规则振荡的振荡问题。此外,还获得了与 Runge-Kutta 方法数值解非常接近的串联分析表达式。此外,还计算了简单规则振荡和不规则振荡两种情况下振荡幅度和频率的解析表达式。最后,所获得的解的简洁性使人一目了然,OM-HPM 提供了一种强大而高效的分析工具,可用于获得此类问题的基于序列的分析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信