{"title":"ArtDiff: Integrating IoT and AI to enhance precision in ancient mural restoration","authors":"","doi":"10.1016/j.aej.2024.09.120","DOIUrl":null,"url":null,"abstract":"<div><div>Ancient murals, as invaluable cultural artifacts, have profound historical and cultural significance. However, these murals often face degradation phenomena such as peeling, fading, and cracking, which compromises their preservation. Conventional methodologies for protection and restoration exhibit limitations and do not adequately address multifaceted damage conditions, thus necessitating the integration of advanced technological interventions to enhance restoration effectiveness.This paper delineates a framework for the preservation and restoration of cultural heritage buildings that uses Internet of Things (IoT) technology and Artificial Intelligence (AI). Using real-time environmental and structural health surveillance, in conjunction with security mechanisms, this framework markedly improves precision and efficiency in forecasting and identifying potential risks.Furthermore, in the context of mural restoration, this paper introduces the ArtDiff model. This model amalgamates a modified U-Net for initial crack detection with an edge-guided restoration technique, employing a diffusion model for meticulous restoration. Empirical results substantiate the superiority of the ArtDiff model in crack detection and mural restoration, delivering a greater precision and efficacy relative to existing approaches. Through the implementation of multilevel supervision strategies and an avant-garde model architecture, this study offers a sophisticated mural restoration solution, furnishing novel technological support for the preservation of cultural heritage.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824011530","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ancient murals, as invaluable cultural artifacts, have profound historical and cultural significance. However, these murals often face degradation phenomena such as peeling, fading, and cracking, which compromises their preservation. Conventional methodologies for protection and restoration exhibit limitations and do not adequately address multifaceted damage conditions, thus necessitating the integration of advanced technological interventions to enhance restoration effectiveness.This paper delineates a framework for the preservation and restoration of cultural heritage buildings that uses Internet of Things (IoT) technology and Artificial Intelligence (AI). Using real-time environmental and structural health surveillance, in conjunction with security mechanisms, this framework markedly improves precision and efficiency in forecasting and identifying potential risks.Furthermore, in the context of mural restoration, this paper introduces the ArtDiff model. This model amalgamates a modified U-Net for initial crack detection with an edge-guided restoration technique, employing a diffusion model for meticulous restoration. Empirical results substantiate the superiority of the ArtDiff model in crack detection and mural restoration, delivering a greater precision and efficacy relative to existing approaches. Through the implementation of multilevel supervision strategies and an avant-garde model architecture, this study offers a sophisticated mural restoration solution, furnishing novel technological support for the preservation of cultural heritage.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering