Francisco Hernandez , Luis Carcamo , Hong Hao , Xihong Zhang , Nicolas Contreras , Rodrigo Astroza
{"title":"Analysis of fuel storage tanks under internal deflagrations with different venting technologies: an experimental and numerical study","authors":"Francisco Hernandez , Luis Carcamo , Hong Hao , Xihong Zhang , Nicolas Contreras , Rodrigo Astroza","doi":"10.1016/j.engfailanal.2024.108948","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates small-scale fuel storage tanks subjected to internal methane-air explosions, focusing on three depressurization technologies using roof ventilation to mitigate overpressure and damage. Tests with low methane-air concentrations were conducted to generate a pseudo-static internal pressure. This approach minimized scale effects and aligned internal pressure frequency with real-scale tank behavior during deflagrations. The first prototype features a tank with a frangible roof activated by localized brittle failure of stitch welds around the roof-to-shell junction. This confirms that stitched weld patterns ensure controlled brittle failure with activation pressure estimated by a simplified equation. The second technology employs a sequential ventilation strategy, starting with a small hinged panel followed by stitch weld failure, managing low to medium-intensity explosions with the small vent alone, and allowing rapid operational recovery. In severe explosions, the hinged door facilitates earlier activation of the frangible roof, reducing the initial pressure rise rate and controlling the roof opening direction. Lastly, the study explores tanks with commercial explosion vent panels as an alternative to traditional frangible roofs, offering a practical solution for retrofitting existing tanks. Each technology enhances safety in fuel storage facilities by effectively managing internal pressures during explosive events.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724009944","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates small-scale fuel storage tanks subjected to internal methane-air explosions, focusing on three depressurization technologies using roof ventilation to mitigate overpressure and damage. Tests with low methane-air concentrations were conducted to generate a pseudo-static internal pressure. This approach minimized scale effects and aligned internal pressure frequency with real-scale tank behavior during deflagrations. The first prototype features a tank with a frangible roof activated by localized brittle failure of stitch welds around the roof-to-shell junction. This confirms that stitched weld patterns ensure controlled brittle failure with activation pressure estimated by a simplified equation. The second technology employs a sequential ventilation strategy, starting with a small hinged panel followed by stitch weld failure, managing low to medium-intensity explosions with the small vent alone, and allowing rapid operational recovery. In severe explosions, the hinged door facilitates earlier activation of the frangible roof, reducing the initial pressure rise rate and controlling the roof opening direction. Lastly, the study explores tanks with commercial explosion vent panels as an alternative to traditional frangible roofs, offering a practical solution for retrofitting existing tanks. Each technology enhances safety in fuel storage facilities by effectively managing internal pressures during explosive events.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.