Federico Alberini, Francesco Nerini, Niccolò Mandolini, Francesco Maluta, Alessandro Paglianti, Nicodemo Di Pasquale, Giuseppina Montante
{"title":"On the reliability of image analysis for bubble size distribution measurements in electrolyte solutions in stirred reactors","authors":"Federico Alberini, Francesco Nerini, Niccolò Mandolini, Francesco Maluta, Alessandro Paglianti, Nicodemo Di Pasquale, Giuseppina Montante","doi":"10.1016/j.ceja.2024.100658","DOIUrl":null,"url":null,"abstract":"<div><div>The translation of chemical processes from laboratory to industrial scale is crucial for the effective and sustainable implementation of new technologies. This transition presents significant challenges, particularly in multiphase systems where variations in physical chemistry can complicate scale-up efforts. A key aspect of this challenge is understanding bubble dynamics in gas-liquid systems, which are pivotal in processes such as hydrogen production and CO2 absorption. Bubble size significantly influences mass transfer rates and process efficiency, necessitating accurate measurement methods. A factorial design approach was employed to assess the sensitivity of results to key parameters. The findings provide quantitative guidelines for optimizing image analysis techniques and improving the accuracy of bubble size measurements in diverse operational conditions. This work advances the understanding of bubble dynamics in gas-liquid systems and offers practical insights for refining measurement techniques, ultimately supporting more effective scale-up of chemical processes.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100658"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The translation of chemical processes from laboratory to industrial scale is crucial for the effective and sustainable implementation of new technologies. This transition presents significant challenges, particularly in multiphase systems where variations in physical chemistry can complicate scale-up efforts. A key aspect of this challenge is understanding bubble dynamics in gas-liquid systems, which are pivotal in processes such as hydrogen production and CO2 absorption. Bubble size significantly influences mass transfer rates and process efficiency, necessitating accurate measurement methods. A factorial design approach was employed to assess the sensitivity of results to key parameters. The findings provide quantitative guidelines for optimizing image analysis techniques and improving the accuracy of bubble size measurements in diverse operational conditions. This work advances the understanding of bubble dynamics in gas-liquid systems and offers practical insights for refining measurement techniques, ultimately supporting more effective scale-up of chemical processes.