Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles

IF 5.5 Q1 ENGINEERING, CHEMICAL
Rogelio A. Léon-García , Ernesto Rojas-Pablos , Jorge L. Mejía-Méndez , Araceli. Sanchez-Martinez , Diego E. Navarro-López , Angélica Lizeth Sánchez-López , Luis Marcelo Lozano , Oscar Ceballos-Sanchez , Edgar R. López-Mena , Gildardo Sanchez-Ante
{"title":"Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles","authors":"Rogelio A. Léon-García ,&nbsp;Ernesto Rojas-Pablos ,&nbsp;Jorge L. Mejía-Méndez ,&nbsp;Araceli. Sanchez-Martinez ,&nbsp;Diego E. Navarro-López ,&nbsp;Angélica Lizeth Sánchez-López ,&nbsp;Luis Marcelo Lozano ,&nbsp;Oscar Ceballos-Sanchez ,&nbsp;Edgar R. López-Mena ,&nbsp;Gildardo Sanchez-Ante","doi":"10.1016/j.ceja.2024.100669","DOIUrl":null,"url":null,"abstract":"<div><div>Multilayer sequential neural networks, a powerful machine learning model, demonstrate the ability to learn intricate relationships between input features and desired outputs. This study focuses on employing such models to design photovoltaic cells. Specifically, neodymium (Nd)-doped ZnO nanoparticles (NPs) were utilized as a photoanode for fabricating dye-sensitized solar cells (DSSCs). A natural dye extracted from Spinacia oleracea was employed, while two types of electrolytes, liquid and gel (polyethylene glycol-based), were used for comparative analysis. Extensive material characterization of the photoanode highlights the impact of Nd content on the physicochemical properties of ZnO. Notably, when the doped photoanode and gel electrolyte were combined, a substantial 110% improvement in power conversion efficiency (PCE) was achieved. Building on these findings, the machine learning model in this research accurately predicts the current-voltage (I-V) curve values for such photoanodes, with an impressive accuracy of 98%. Additionally, the model illuminates the significance of variables like crystal distortion, texture coefficient, and doping concentration, underscoring their importance in the context of photovoltaic cell design.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100669"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multilayer sequential neural networks, a powerful machine learning model, demonstrate the ability to learn intricate relationships between input features and desired outputs. This study focuses on employing such models to design photovoltaic cells. Specifically, neodymium (Nd)-doped ZnO nanoparticles (NPs) were utilized as a photoanode for fabricating dye-sensitized solar cells (DSSCs). A natural dye extracted from Spinacia oleracea was employed, while two types of electrolytes, liquid and gel (polyethylene glycol-based), were used for comparative analysis. Extensive material characterization of the photoanode highlights the impact of Nd content on the physicochemical properties of ZnO. Notably, when the doped photoanode and gel electrolyte were combined, a substantial 110% improvement in power conversion efficiency (PCE) was achieved. Building on these findings, the machine learning model in this research accurately predicts the current-voltage (I-V) curve values for such photoanodes, with an impressive accuracy of 98%. Additionally, the model illuminates the significance of variables like crystal distortion, texture coefficient, and doping concentration, underscoring their importance in the context of photovoltaic cell design.

Abstract Image

利用多层顺序神经网络改进光伏电池设计:掺钕氧化锌纳米粒子研究
多层序列神经网络是一种功能强大的机器学习模型,能够学习输入特征与所需输出之间的复杂关系。本研究的重点是利用这种模型来设计光伏电池。具体来说,掺杂钕(Nd)的氧化锌纳米粒子(NPs)被用作制造染料敏化太阳能电池(DSSCs)的光阳极。该研究采用了一种从菠菜中提取的天然染料,并使用了两种电解质(液体和凝胶(聚乙二醇基))进行比较分析。光阳极的广泛材料表征凸显了钕含量对氧化锌理化性质的影响。值得注意的是,当掺杂光阳极和凝胶电解质结合使用时,功率转换效率(PCE)大幅提高了 110%。在这些发现的基础上,本研究中的机器学习模型准确预测了此类光阳极的电流-电压(I-V)曲线值,准确率高达 98%,令人印象深刻。此外,该模型还阐明了晶体畸变、纹理系数和掺杂浓度等变量的重要性,强调了它们在光伏电池设计中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信