Feng Liu , Hongxiang Tang , Mohamed A. Shahin , Honghua Zhao , Ali Karrech , Feng Zhu , He Zhou
{"title":"Multiscale simulation study for mechanical characteristics of coral sand influenced by particle breakage","authors":"Feng Liu , Hongxiang Tang , Mohamed A. Shahin , Honghua Zhao , Ali Karrech , Feng Zhu , He Zhou","doi":"10.1016/j.powtec.2024.120387","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the mechanical response of coral sand under particle breakage using a hierarchical multiscale model combining the discrete element method (DEM) and the finite element method (FEM). This DEM-FEM model links the microscopic interaction mechanisms to macroscopic phenomena such as strain localization and failure. A cohesive contact model was first utilized to simulate compaction bands in the DEM and construct a cohesive assembly with smaller particles distributed around a larger particle to better simulate the grinding and angular breakage of coral sand. A representative volume element (RVE) that includes particle breakage was then constructed and analyzed under periodic boundary conditions. DEM analysis was performed, and the results were compared with triaxial compression test data obtained from the literature, demonstrating that the constructed RVE effectively represents the mechanical properties of coral sand. The constructed RVE was used for hierarchical multiscale simulations, which showed good agreement with existing triaxial testing of coral sand. Finally, by setting a larger cohesive force, the constructed coral sand particles were prevented from breakage, and comparative analysis revealed that particle breakage weakens the mechanical properties of coral sand. Furthermore, different shapes of coral sand particles were constructed, and RVE and hierarchical multiscale simulations of triaxial tests were performed. The results indicated that the triaxial tests of long strip-shaped coral sand particles exhibit higher peak values compared to spherical coral sand particles. Additionally, a double porosity model of coral sand was constructed to analyze the impact of internal porosity on soil mechanical properties. The results showed that the presence of internal porosity significantly weakened the mechanical properties of coral sand. These findings highlight the significant impact of particle breakage and shape on the mechanical behavior of coral sand, offering important insights for engineering applications.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120387"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010313","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the mechanical response of coral sand under particle breakage using a hierarchical multiscale model combining the discrete element method (DEM) and the finite element method (FEM). This DEM-FEM model links the microscopic interaction mechanisms to macroscopic phenomena such as strain localization and failure. A cohesive contact model was first utilized to simulate compaction bands in the DEM and construct a cohesive assembly with smaller particles distributed around a larger particle to better simulate the grinding and angular breakage of coral sand. A representative volume element (RVE) that includes particle breakage was then constructed and analyzed under periodic boundary conditions. DEM analysis was performed, and the results were compared with triaxial compression test data obtained from the literature, demonstrating that the constructed RVE effectively represents the mechanical properties of coral sand. The constructed RVE was used for hierarchical multiscale simulations, which showed good agreement with existing triaxial testing of coral sand. Finally, by setting a larger cohesive force, the constructed coral sand particles were prevented from breakage, and comparative analysis revealed that particle breakage weakens the mechanical properties of coral sand. Furthermore, different shapes of coral sand particles were constructed, and RVE and hierarchical multiscale simulations of triaxial tests were performed. The results indicated that the triaxial tests of long strip-shaped coral sand particles exhibit higher peak values compared to spherical coral sand particles. Additionally, a double porosity model of coral sand was constructed to analyze the impact of internal porosity on soil mechanical properties. The results showed that the presence of internal porosity significantly weakened the mechanical properties of coral sand. These findings highlight the significant impact of particle breakage and shape on the mechanical behavior of coral sand, offering important insights for engineering applications.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.