{"title":"Phytosulfokine treatment delays browning of litchi pericarps during storage at room temperature","authors":"Hanzhi Liang , Yanxuan Zhu , Zhiwei Li , Yueming Jiang , Xuewu Duan , Guoxiang Jiang","doi":"10.1016/j.postharvbio.2024.113262","DOIUrl":null,"url":null,"abstract":"<div><div>Litchi, a tropical and subtropical fruit with substantial commercial value, is prone to browning after harvest. Phytosulfokine (PSK), a plant peptide hormone, plays a significant role in postharvest fruit preservation by affecting various biological processes. However, its specific effects on litchi browning have not been fully elucidated. This study demonstrates that PSK application effectively delays litchi pericarp browning, maintains a higher TSS/TA ratio, and reduces electrical conductivity. PSK treatment inhibits the degradation of anthocyanins, flavonoids, and phenolics, while also decreasing the accumulation of hydrogen peroxide (H₂O₂), malondialdehyde (MDA), and superoxide anions (O₂⁻). Additionally, PSK enhances the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), while reducing the activities of ascorbate peroxidase (APX), polyphenol oxidase (PPO), and peroxidase (POD) compared to the control. Transcriptome analysis reveals that PSK upregulates genes involved in plant hormone signaling and biosynthesis of anthocyanins and flavonoids, while downregulating genes associated with glutathione metabolism and autophagy. RT-qPCR confirms that PSK treatment decreases the expression levels of <em>APX</em>, <em>LAC7</em>, <em>PPO</em>, <em>POD1</em>, <em>POD5</em>, <em>POD51</em>, and <em>PODX</em>, while increasing the expression of <em>GPX4</em>, contributing to the delayed browning. These findings suggest that PSK mitigates litchi browning by modulating oxidative enzymatic reactions and suppressing the expression of browning-related genes.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"219 ","pages":"Article 113262"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424005076","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Litchi, a tropical and subtropical fruit with substantial commercial value, is prone to browning after harvest. Phytosulfokine (PSK), a plant peptide hormone, plays a significant role in postharvest fruit preservation by affecting various biological processes. However, its specific effects on litchi browning have not been fully elucidated. This study demonstrates that PSK application effectively delays litchi pericarp browning, maintains a higher TSS/TA ratio, and reduces electrical conductivity. PSK treatment inhibits the degradation of anthocyanins, flavonoids, and phenolics, while also decreasing the accumulation of hydrogen peroxide (H₂O₂), malondialdehyde (MDA), and superoxide anions (O₂⁻). Additionally, PSK enhances the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), while reducing the activities of ascorbate peroxidase (APX), polyphenol oxidase (PPO), and peroxidase (POD) compared to the control. Transcriptome analysis reveals that PSK upregulates genes involved in plant hormone signaling and biosynthesis of anthocyanins and flavonoids, while downregulating genes associated with glutathione metabolism and autophagy. RT-qPCR confirms that PSK treatment decreases the expression levels of APX, LAC7, PPO, POD1, POD5, POD51, and PODX, while increasing the expression of GPX4, contributing to the delayed browning. These findings suggest that PSK mitigates litchi browning by modulating oxidative enzymatic reactions and suppressing the expression of browning-related genes.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.