Siwen Zhao, Jinqiang Huang, Valentin Crépel, Zhiren Xiong, Xingguang Wu, Tongyao Zhang, Hanwen Wang, Xiangyan Han, Zhengyu Li, Chuanying Xi, Senyang Pan, Zhaosheng Wang, Guangli Kuang, Jun Luo, Qinxin Shen, Jie Yang, Rui Zhou, Kenji Watanabe, Takashi Taniguchi, Benjamin Sacépé, Jing Zhang, Ning Wang, Jianming Lu, Nicolas Regnault, Zheng Vitto Han
{"title":"Fractional quantum Hall phases in high-mobility n-type molybdenum disulfide transistors","authors":"Siwen Zhao, Jinqiang Huang, Valentin Crépel, Zhiren Xiong, Xingguang Wu, Tongyao Zhang, Hanwen Wang, Xiangyan Han, Zhengyu Li, Chuanying Xi, Senyang Pan, Zhaosheng Wang, Guangli Kuang, Jun Luo, Qinxin Shen, Jie Yang, Rui Zhou, Kenji Watanabe, Takashi Taniguchi, Benjamin Sacépé, Jing Zhang, Ning Wang, Jianming Lu, Nicolas Regnault, Zheng Vitto Han","doi":"10.1038/s41928-024-01274-1","DOIUrl":null,"url":null,"abstract":"<p>Transistors based on semiconducting transition metal dichalcogenides can, in theory, offer high carrier mobilities, strong spin–orbit coupling and inherently strong electronic interactions at the quantum ground states. This makes them well suited for use in nanoelectronics at low temperatures. However, creating robust ohmic contacts to transition metal dichalcogenide layers at cryogenic temperatures is difficult. As a result, it is not possible to reach the quantum limit at which the Fermi level is close to the band edge and thus probe electron correlations in the fractionally filled Landau-level regime. Here we show that ohmic contacts to n-type molybdenum disulfide can be created over a temperature range from millikelvins to 300 K using a window-contacted technique. We observe field-effect mobilities of over 100,000 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and quantum mobilities of over 3,000 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> in the conduction band at low temperatures. We also report evidence for fractional quantum Hall states at filling fractions of 4/5 and 2/5 in the lowest Landau levels of bilayer molybdenum disulfide.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"26 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01274-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transistors based on semiconducting transition metal dichalcogenides can, in theory, offer high carrier mobilities, strong spin–orbit coupling and inherently strong electronic interactions at the quantum ground states. This makes them well suited for use in nanoelectronics at low temperatures. However, creating robust ohmic contacts to transition metal dichalcogenide layers at cryogenic temperatures is difficult. As a result, it is not possible to reach the quantum limit at which the Fermi level is close to the band edge and thus probe electron correlations in the fractionally filled Landau-level regime. Here we show that ohmic contacts to n-type molybdenum disulfide can be created over a temperature range from millikelvins to 300 K using a window-contacted technique. We observe field-effect mobilities of over 100,000 cm2 V−1 s−1 and quantum mobilities of over 3,000 cm2 V−1 s−1 in the conduction band at low temperatures. We also report evidence for fractional quantum Hall states at filling fractions of 4/5 and 2/5 in the lowest Landau levels of bilayer molybdenum disulfide.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.