Simultaneously Enhanced Low Temperature Li+ Transport Kinetics and Crystal Stability of Nb1.94Mo0.06O5@C Anode Induced by Distorted NbO6 Octahedron

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guan Wang, Guixin Wang, Haotian Dong, Jiaxin Li, Suojiang Zhang, Haitao Zhang
{"title":"Simultaneously Enhanced Low Temperature Li+ Transport Kinetics and Crystal Stability of Nb1.94Mo0.06O5@C Anode Induced by Distorted NbO6 Octahedron","authors":"Guan Wang, Guixin Wang, Haotian Dong, Jiaxin Li, Suojiang Zhang, Haitao Zhang","doi":"10.1002/adfm.202414393","DOIUrl":null,"url":null,"abstract":"The electrochemical performances of lithium‐ion batteries (LIBs) will be significantly degraded under low‐temperature conditions, which restricts their wide application in cold environments. Herein, the low‐temperature transport kinetics of a novel Nb<jats:sub>1.94</jats:sub>Mo<jats:sub>0.06</jats:sub>O<jats:sub>5</jats:sub>@C nanocomposite anode is accelerated greatly via engineering the microstructure and NbO<jats:sub>6</jats:sub> octahedron. The detailed crystallographic features are characterized by using synchrotron radiation, spherical electron microscope, and density functional theory simulation methods. Both experimental and simulation analysis suggest that Mo<jats:sup>6+</jats:sup> preferentially replaces Nb<jats:sup>5+</jats:sup> in the regular octahedral location and distorts the NbO<jats:sub>6</jats:sub> octahedron, resulting in a widened <jats:italic>c</jats:italic>‐axis spacing and a lowered ion diffusion barrier. Coupled with the enhanced electronic conductivity derived from surface carbon layer, Nb<jats:sub>1.94</jats:sub>Mo<jats:sub>0.06</jats:sub>O<jats:sub>5</jats:sub>@C anode exhibits an enhanced charge transfer process, improved Li<jats:sup>+</jats:sup> diffusion kinetics, pronounced pseudo‐capacitance process, and excellent low temperature capacity. Furthermore, in situ X‐ray diffraction and ex situ electron microscope elucidate that the structural evolution of Nb<jats:sub>1.94</jats:sub>Mo<jats:sub>0.06</jats:sub>O<jats:sub>5</jats:sub>@C is highly reversible, unveiling its excellent cycling stability. The full cell assembled with LiNi<jats:sub>0.6</jats:sub>Co<jats:sub>0.2</jats:sub>Mn<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> cathode demonstrates excellent practicality. This study reveals the critical role of distorting NbO<jats:sub>6</jats:sub> octahedron and expanding crystal spacing in facilitating rapid Li<jats:sup>+</jats:sup> diffusion and enhancing charge storage performance of Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> at low temperatures.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"15 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414393","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical performances of lithium‐ion batteries (LIBs) will be significantly degraded under low‐temperature conditions, which restricts their wide application in cold environments. Herein, the low‐temperature transport kinetics of a novel Nb1.94Mo0.06O5@C nanocomposite anode is accelerated greatly via engineering the microstructure and NbO6 octahedron. The detailed crystallographic features are characterized by using synchrotron radiation, spherical electron microscope, and density functional theory simulation methods. Both experimental and simulation analysis suggest that Mo6+ preferentially replaces Nb5+ in the regular octahedral location and distorts the NbO6 octahedron, resulting in a widened c‐axis spacing and a lowered ion diffusion barrier. Coupled with the enhanced electronic conductivity derived from surface carbon layer, Nb1.94Mo0.06O5@C anode exhibits an enhanced charge transfer process, improved Li+ diffusion kinetics, pronounced pseudo‐capacitance process, and excellent low temperature capacity. Furthermore, in situ X‐ray diffraction and ex situ electron microscope elucidate that the structural evolution of Nb1.94Mo0.06O5@C is highly reversible, unveiling its excellent cycling stability. The full cell assembled with LiNi0.6Co0.2Mn0.2O2 cathode demonstrates excellent practicality. This study reveals the critical role of distorting NbO6 octahedron and expanding crystal spacing in facilitating rapid Li+ diffusion and enhancing charge storage performance of Nb2O5 at low temperatures.
扭曲 NbO6 八面体同时增强 Nb1.94Mo0.06O5@C 阳极的低温 Li+ 输运动力学和晶体稳定性
锂离子电池(LIBs)的电化学性能在低温条件下会明显降低,这限制了其在寒冷环境中的广泛应用。在本文中,通过对微观结构和 NbO6 八面体进行工程设计,大大加快了新型 Nb1.94Mo0.06O5@C 纳米复合负极的低温传输动力学。利用同步辐射、球形电子显微镜和密度泛函理论模拟方法对详细的晶体学特征进行了表征。实验和模拟分析表明,Mo6+优先取代了位于规则八面体位置的 Nb5+,并扭曲了 NbO6 八面体,导致 c 轴间距变宽,离子扩散阻力降低。再加上表面碳层增强了电子传导性,Nb1.94Mo0.06O5@C 阳极显示出增强的电荷转移过程、改进的 Li+ 扩散动力学、明显的伪电容过程和优异的低温容量。此外,原位 X 射线衍射和原位电子显微镜分析表明,Nb1.94Mo0.06O5@C 的结构演变具有高度可逆性,从而揭示了其卓越的循环稳定性。用 LiNi0.6Co0.2Mn0.2O2 阴极组装的全电池具有出色的实用性。这项研究揭示了扭曲 NbO6 八面体和扩大晶体间距在促进 Li+ 快速扩散和提高 Nb2O5 在低温下的电荷存储性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信