Cong Shen, Shaomu Wen, Jing Yan, Zhipeng Ai, Lin Mo, Yang Qing
{"title":"N, S-Codoped Carbon Quantum Dots with High Inhibition Efficiency: Implications for Corrosion Mitigation of Carbon Steel in Acidic Environments","authors":"Cong Shen, Shaomu Wen, Jing Yan, Zhipeng Ai, Lin Mo, Yang Qing","doi":"10.1021/acs.langmuir.4c02552","DOIUrl":null,"url":null,"abstract":"The environmental friendliness, economic feasibility, and high efficiency of carbon quantum dots (CQDs) render them as highly promising candidates for corrosion inhibitors. The present study proposed the fabrication of nitrogen- and sulfur-codoped CQDs via an one-step hydrothermal method using <span>l</span>-cysteine and 4-aminosalicylic acid as precursors. The structure, particle size, and surface ligands of the prepared CQDs were determined through spectroscopy and transmission electron microscopy characterization. Subsequently, the inhibition performance of the CQDs on carbon steel in a 0.5 M sulfuric acid solution was evaluated through weight loss measurement, electrochemical methods, and surface analysis. The CQDs exhibited remarkable inhibition efficiencies of 97.9% at 293 K and 98.9% at 313 K, with a concentration of 150 ppm. In addition, the obtained CQDs demonstrated a combined physisorption and chemisorption adsorption behavior, which complied with the Langmuir adsorption isotherm. These findings provide insight into the inhibition mechanism and highlight the potential of codoped CQDs for corrosion mitigation applications in acidic environments.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02552","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental friendliness, economic feasibility, and high efficiency of carbon quantum dots (CQDs) render them as highly promising candidates for corrosion inhibitors. The present study proposed the fabrication of nitrogen- and sulfur-codoped CQDs via an one-step hydrothermal method using l-cysteine and 4-aminosalicylic acid as precursors. The structure, particle size, and surface ligands of the prepared CQDs were determined through spectroscopy and transmission electron microscopy characterization. Subsequently, the inhibition performance of the CQDs on carbon steel in a 0.5 M sulfuric acid solution was evaluated through weight loss measurement, electrochemical methods, and surface analysis. The CQDs exhibited remarkable inhibition efficiencies of 97.9% at 293 K and 98.9% at 313 K, with a concentration of 150 ppm. In addition, the obtained CQDs demonstrated a combined physisorption and chemisorption adsorption behavior, which complied with the Langmuir adsorption isotherm. These findings provide insight into the inhibition mechanism and highlight the potential of codoped CQDs for corrosion mitigation applications in acidic environments.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).