Atomistic first-principles modeling of single donor spin-qubit

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Songqi Jia, Félix Beaudoin, Pericles Philippopoulos, Hong Guo
{"title":"Atomistic first-principles modeling of single donor spin-qubit","authors":"Songqi Jia, Félix Beaudoin, Pericles Philippopoulos, Hong Guo","doi":"10.1063/5.0221229","DOIUrl":null,"url":null,"abstract":"Using an impurity atom in crystal silicon as a spin-1/2 qubit has been made experimentally possible recently where the impurity atom acts as a quantum dot (QD). Quantum transport in and out of such a donor QD occurs in the sequential tunneling regime where a physical quantity of importance is the charging (addition) energy, which measures the energy necessary for adding an electron into the donor QD. In this work, we present a first-principles method to quantitatively predict the addition energy of the donor QD. Using density functional theory (DFT), we determine the impurity states that serve as the basis set for subsequent exact diagonalization calculation of the many-body states and energies of the donor QD. Due to the large effective Bohr radius of the conduction electrons in Si, very large supercells containing more than 10 000 atoms must be used to obtain accurate results. For the donor QD of a phosphorus impurity in bulk Si, the combined DFT and exact diagonalization predicts the first addition energy to be 53 meV, in good agreement with the corresponding experimental value. For the donor QD of an arsenic impurity in Si, the first addition energy is predicted to be 44.2 meV. The calculated many-body wave functions provide a vivid electronic picture of the donor QD.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0221229","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using an impurity atom in crystal silicon as a spin-1/2 qubit has been made experimentally possible recently where the impurity atom acts as a quantum dot (QD). Quantum transport in and out of such a donor QD occurs in the sequential tunneling regime where a physical quantity of importance is the charging (addition) energy, which measures the energy necessary for adding an electron into the donor QD. In this work, we present a first-principles method to quantitatively predict the addition energy of the donor QD. Using density functional theory (DFT), we determine the impurity states that serve as the basis set for subsequent exact diagonalization calculation of the many-body states and energies of the donor QD. Due to the large effective Bohr radius of the conduction electrons in Si, very large supercells containing more than 10 000 atoms must be used to obtain accurate results. For the donor QD of a phosphorus impurity in bulk Si, the combined DFT and exact diagonalization predicts the first addition energy to be 53 meV, in good agreement with the corresponding experimental value. For the donor QD of an arsenic impurity in Si, the first addition energy is predicted to be 44.2 meV. The calculated many-body wave functions provide a vivid electronic picture of the donor QD.
单供体自旋量子比特的原子第一原理建模
利用晶体硅中的杂质原子作为自旋-1/2 量子位最近已在实验中成为可能,杂质原子充当量子点(QD)。进出这种供体 QD 的量子输运发生在顺序隧穿机制中,其中一个重要的物理量是充电(加法)能量,它测量的是向供体 QD 中添加一个电子所需的能量。在这项工作中,我们提出了一种第一原理方法,用于定量预测供体 QD 的加成能。通过使用密度泛函理论(DFT),我们确定了杂质态,并将其作为后续精确对角计算供体 QD 多体态和能量的基础集。由于硅中传导电子的有效玻尔半径较大,因此必须使用包含 10,000 多个原子的超大单元才能获得准确的结果。对于大块硅中磷杂质的供体 QD,结合 DFT 和精确对角化预测出其第一加成能量为 53 meV,与相应的实验值非常吻合。对于硅中砷杂质的供体 QD,预测的第一加成能为 44.2 meV。计算出的多体波函数提供了供体 QD 的生动电子图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信