Validation of crystal surface scattering method for downsizing accelerator mass spectrometry

IF 1.4 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION
Satoshi Jinno , Akihiro Matsubara , Natsuko Fujita , Kenji Kimura
{"title":"Validation of crystal surface scattering method for downsizing accelerator mass spectrometry","authors":"Satoshi Jinno ,&nbsp;Akihiro Matsubara ,&nbsp;Natsuko Fujita ,&nbsp;Kenji Kimura","doi":"10.1016/j.nimb.2024.165545","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the development of a downsized Accelerator Mass Spectrometry (AMS) system aiming to enhance accessibility and cost-effectiveness in radiocarbon analysis. The “crystal surface stripper method” is introduced as a solution to challenges in AMS downsizing, demonstrating effective ion detection with a smaller angular spread compared to conventional gas stripper methods. The experimental results provide insights into charge conversion capabilities, scattering angle broadening, and energy loss associated with surface scattering.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"557 ","pages":"Article 165545"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X2400315X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the development of a downsized Accelerator Mass Spectrometry (AMS) system aiming to enhance accessibility and cost-effectiveness in radiocarbon analysis. The “crystal surface stripper method” is introduced as a solution to challenges in AMS downsizing, demonstrating effective ion detection with a smaller angular spread compared to conventional gas stripper methods. The experimental results provide insights into charge conversion capabilities, scattering angle broadening, and energy loss associated with surface scattering.
验证用于缩小加速器质谱的晶体表面散射法
本研究介绍了小型加速器质谱仪(AMS)系统的开发情况,旨在提高放射性碳分析的可及性和成本效益。与传统的气体剥离法相比,"晶体表面剥离法 "能以更小的角度展宽进行有效的离子检测。实验结果提供了与表面散射相关的电荷转换能力、散射角展宽和能量损失方面的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
231
审稿时长
1.9 months
期刊介绍: Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信