Bin Pang , Yanjie Zhao , Changqi Yu , Ziyang Hao , Zhenduo Sun , Zhenli Xu , Pu Li
{"title":"Empirical variational mode extraction and its application in bearing fault diagnosis","authors":"Bin Pang , Yanjie Zhao , Changqi Yu , Ziyang Hao , Zhenduo Sun , Zhenli Xu , Pu Li","doi":"10.1016/j.apacoust.2024.110349","DOIUrl":null,"url":null,"abstract":"<div><div>Bearing fault signals typically contain rich interference components such as random pulses, harmonics, and environmental noise, posing significant challenges for bearing fault feature identification. Derived from variational mode decomposition (VMD), variational mode extraction (VME) stands out due to its specialized narrowband filtering capabilities, enabling effective extraction of targeted components from complex signals. However, VME’s capability notably depends on two key parameters: the penalty factor, which controls the bandwidth of extracted mode, and the central frequency, determining the frequency band’s center for extraction. An empirical variational mode extraction (EVME) method, inspired by the structure of empirical wavelet transform (EWT), is introduced to guide optimal filtering and demodulation analysis of fault components. Firstly, the effects of central frequency and penalty factor on the filtering characteristics of VME are thoroughly investigated and the mathematical relationship between bandwidth and penalty parameter is established through mathematical simulations. Secondly, a spectrum background scale-space division (SBSSD) method which incorporates adaptive clutter separation (ACS) and scale-space division is proposed to implement an optimal spectrum division, guiding the parameter determination of VME. Finally, each component is recursively extracted by VME from low to high frequencies following the segmentation outcomes of frequency bands. Simulated and experimental validations confirm the capability of EVME for extracting bearing fault features. Furthermore, comparisons with VMD and EWT underscore its superiority.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24005000","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bearing fault signals typically contain rich interference components such as random pulses, harmonics, and environmental noise, posing significant challenges for bearing fault feature identification. Derived from variational mode decomposition (VMD), variational mode extraction (VME) stands out due to its specialized narrowband filtering capabilities, enabling effective extraction of targeted components from complex signals. However, VME’s capability notably depends on two key parameters: the penalty factor, which controls the bandwidth of extracted mode, and the central frequency, determining the frequency band’s center for extraction. An empirical variational mode extraction (EVME) method, inspired by the structure of empirical wavelet transform (EWT), is introduced to guide optimal filtering and demodulation analysis of fault components. Firstly, the effects of central frequency and penalty factor on the filtering characteristics of VME are thoroughly investigated and the mathematical relationship between bandwidth and penalty parameter is established through mathematical simulations. Secondly, a spectrum background scale-space division (SBSSD) method which incorporates adaptive clutter separation (ACS) and scale-space division is proposed to implement an optimal spectrum division, guiding the parameter determination of VME. Finally, each component is recursively extracted by VME from low to high frequencies following the segmentation outcomes of frequency bands. Simulated and experimental validations confirm the capability of EVME for extracting bearing fault features. Furthermore, comparisons with VMD and EWT underscore its superiority.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.