Unconditional superconvergence analysis of a new energy stable nonconforming BDF2 mixed finite element method for BBM–Burgers equation

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Xuemiao Xu , Dongyang Shi
{"title":"Unconditional superconvergence analysis of a new energy stable nonconforming BDF2 mixed finite element method for BBM–Burgers equation","authors":"Xuemiao Xu ,&nbsp;Dongyang Shi","doi":"10.1016/j.cnsns.2024.108387","DOIUrl":null,"url":null,"abstract":"<div><div>The focus of this paper is to establish a new energy stable 2-step backward differentiation formula (BDF2) fully-discrete mixed finite element method (MFEM) for the Benjamin–Bona–Mahony–Burgers (BBM–Burgers) equation with the nonconforming rectangular <span><math><mrow><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></mrow></math></span> element and zero-order Raviart–Thomas (R–T) element (<span><math><mrow><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>01</mn></mrow></msub></mrow></math></span>). Based on the energy stable property, the existence and uniqueness of the numerical solution are proved by the Brouwer fixed point theorem. Subsequently, with the assistance of some typical properties of this element pair and the interpolation post-processing approach, the unconditional superclose and superconvergence results with <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> are obtained directly without any constraints between the spatial partition parameter <span><math><mi>h</mi></math></span> and the time step <span><math><mi>τ</mi></math></span>. It is worthy to mention that the method and analysis presented herein are very different from the time–space splitting approach utilized in the previous studies and simplify the implement. Finally, two numerical experiments are executed to validate the theoretical analysis.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005720","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this paper is to establish a new energy stable 2-step backward differentiation formula (BDF2) fully-discrete mixed finite element method (MFEM) for the Benjamin–Bona–Mahony–Burgers (BBM–Burgers) equation with the nonconforming rectangular EQ1rot element and zero-order Raviart–Thomas (R–T) element (EQ1rot/Q10×Q01). Based on the energy stable property, the existence and uniqueness of the numerical solution are proved by the Brouwer fixed point theorem. Subsequently, with the assistance of some typical properties of this element pair and the interpolation post-processing approach, the unconditional superclose and superconvergence results with O(h2+τ2) are obtained directly without any constraints between the spatial partition parameter h and the time step τ. It is worthy to mention that the method and analysis presented herein are very different from the time–space splitting approach utilized in the previous studies and simplify the implement. Finally, two numerical experiments are executed to validate the theoretical analysis.
针对 BBM-Burgers 方程的新型能量稳定不符 BDF2 混合有限元法的无条件超收敛性分析
本文的重点是针对本杰明-博纳-马霍尼-伯格斯(BBM-Burgers)方程建立一种新的能量稳定的两步反向微分公式(BDF2)全离散混合有限元法(MFEM),该方法采用非顺应矩形 EQ1rot 元件和零阶 Raviart-Thomas (R-T) 元件 (EQ1rot/Q10×Q01)。基于能量稳定特性,利用布劳威尔定点定理证明了数值解的存在性和唯一性。随后,借助该元素对的一些典型特性和插值后处理方法,在空间分区参数 h 和时间步长 τ 之间没有任何约束的情况下,直接得到了 O(h2+τ2)的无条件超闭合和超收敛结果。最后,我们进行了两次数值实验来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信