Zhibin Feng , Mingchao Shao , Mingkun Xu , Jing Zhang , Shoubing Chen , Tingmei Wang , Qihua Wang
{"title":"Study on the tribological properties of MXene reinforced polyurethane composites under dry conditions","authors":"Zhibin Feng , Mingchao Shao , Mingkun Xu , Jing Zhang , Shoubing Chen , Tingmei Wang , Qihua Wang","doi":"10.1016/j.triboint.2024.110348","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical properties of the polymer matrix are crucial for forming a stable and dense transfer film between the friction pairs, facilitating friction reduction and wear resistance. This work introduces a novel polyurethane composite (PUC) system, prepared by incorporating the MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) into a polyurethane elastomer, which exhibits a robust strength of ∼ 64 MPa and an excellent toughness of ∼ 155.8 MJ/m<sup>3</sup>. The PUC containing 0.5 wt% MXene (PUC<sub>0.5</sub>) exhibited excellent tribological properties, with the friction coefficient and wear rate (66 N, 0.54 m/s) reduced by 45.1 % and 206 % in comparison to pure PU, respectively. The excellent tribological properties of PUC<sub>0.5</sub> are attributed to exceptional mechanical properties and low shear of MXene.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110348"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of the polymer matrix are crucial for forming a stable and dense transfer film between the friction pairs, facilitating friction reduction and wear resistance. This work introduces a novel polyurethane composite (PUC) system, prepared by incorporating the MXene (Ti3C2Tx) into a polyurethane elastomer, which exhibits a robust strength of ∼ 64 MPa and an excellent toughness of ∼ 155.8 MJ/m3. The PUC containing 0.5 wt% MXene (PUC0.5) exhibited excellent tribological properties, with the friction coefficient and wear rate (66 N, 0.54 m/s) reduced by 45.1 % and 206 % in comparison to pure PU, respectively. The excellent tribological properties of PUC0.5 are attributed to exceptional mechanical properties and low shear of MXene.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.