Tabrez Qureshi, Mohammad Mohsin Khan, Harveer Singh Pali
{"title":"Novel insights into the synthesis and tribo-mechanical performance of high-entropy (Hf0.2Zr0.2Ti0.2W0.2Mo0.2)B2 ceramics","authors":"Tabrez Qureshi, Mohammad Mohsin Khan, Harveer Singh Pali","doi":"10.1016/j.triboint.2024.110321","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy (Hf<sub>0.2</sub>Zr<sub>0.2</sub>Ti<sub>0.2</sub>W<sub>0.2</sub>Mo<sub>0.2</sub>)B<sub>2</sub> ceramics were synthesized using a two-step spark plasma sintering process, with densification at 1600 °C followed by sintering at 1850 °C. This method produced dense materials with excellent mechanical and tribological properties. Hardness values ranged from 18.85 GPa to 39.65 GPa, with a maximum Young’s modulus of 319 GPa. Micro-scratch tests showed high resistance to plastic deformation and minimal surface damage, highlighting durability under mechanical stress. Tribological tests at 15 N and 20 N loads demonstrated exceptional wear resistance, attributed to hard primary phases and lubricating soft secondary phases. These findings confirm the material’s robustness and show the effectiveness of the two-step synthesis in optimizing microstructure and enhancing properties, making it suitable for high-stress and wear-intensive applications.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110321"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010739","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy (Hf0.2Zr0.2Ti0.2W0.2Mo0.2)B2 ceramics were synthesized using a two-step spark plasma sintering process, with densification at 1600 °C followed by sintering at 1850 °C. This method produced dense materials with excellent mechanical and tribological properties. Hardness values ranged from 18.85 GPa to 39.65 GPa, with a maximum Young’s modulus of 319 GPa. Micro-scratch tests showed high resistance to plastic deformation and minimal surface damage, highlighting durability under mechanical stress. Tribological tests at 15 N and 20 N loads demonstrated exceptional wear resistance, attributed to hard primary phases and lubricating soft secondary phases. These findings confirm the material’s robustness and show the effectiveness of the two-step synthesis in optimizing microstructure and enhancing properties, making it suitable for high-stress and wear-intensive applications.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.