Integrating manganese oxide nanoparticles with functionalized carbon nanotubes on carbon cloth to serve as a stable anode for high-capacity Li-ion cells

Merin K. Wilson , Dhanya P. Jacob , Aldrin Antony , M.K. Jayaraj , S. Jayalekshmi
{"title":"Integrating manganese oxide nanoparticles with functionalized carbon nanotubes on carbon cloth to serve as a stable anode for high-capacity Li-ion cells","authors":"Merin K. Wilson ,&nbsp;Dhanya P. Jacob ,&nbsp;Aldrin Antony ,&nbsp;M.K. Jayaraj ,&nbsp;S. Jayalekshmi","doi":"10.1016/j.nxener.2024.100207","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn<sub>3</sub>O<sub>4</sub>) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g<sup>−1</sup> for applications in Li-ion cells.</div><div>In the present work, Mn<sub>3</sub>O<sub>4</sub>-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn<sub>3</sub>O<sub>4</sub>-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> and charge capacity of 1141<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> at current density of 100 mA g<sup>−1</sup> with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> and 958<!--> <!-->mAh<!--> <!-->g<sup>−1</sup>, respectively, with capacity retention of 91% at current rate of 100 mA g<sup>−1</sup>. These cells are found to deliver reversible charge capacity of 575<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> after 100 cycles at 1C (∼1 A g<sup>−1</sup>) and offer prospects of stable operation at high current rates.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100207"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn3O4) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g−1 for applications in Li-ion cells.
In the present work, Mn3O4-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn3O4-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371 mAh g−1 and charge capacity of 1141 mAh g−1 at current density of 100 mA g−1 with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953 mAh g−1 and 958 mAh g−1, respectively, with capacity retention of 91% at current rate of 100 mA g−1. These cells are found to deliver reversible charge capacity of 575 mAh g−1 after 100 cycles at 1C (∼1 A g−1) and offer prospects of stable operation at high current rates.

Abstract Image

在碳布上整合氧化锰纳米粒子和功能化碳纳米管,作为高容量锂离子电池的稳定阳极
在全球范围内,能源需求巨大,环境问题也日益严重,不利于我们的可持续发展。为了最大限度地利用可再生能源,必须开发高效的储能系统。锂离子电池(LIB)具有比容量大、循环寿命长的特点,在为便携式设备和电动汽车供电方面发挥着不可或缺的作用。氧化锰(Mn3O4)是一种环境友好型阳极活性材料,理论比容量高达 936 mAh g-1,可应用于锂离子电池。在电流密度为 100 mA g-1 时,基于这种纳米复合阳极的锂离子纽扣电池的放电容量为 1371 mAh g-1,充电容量为 1141 mAh g-1,初始库仑效率为 83%。经过 70 次循环后,电池的充放电容量分别为 953 mAh g-1 和 958 mAh g-1,在 100 mA g-1 的电流密度下,容量保持率为 91%。这些电池在 1C 条件下循环 100 次后,可提供 575 mAh g-1 的可逆充电容量(∼1 A g-1),并有望在高电流速率下稳定运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信