Indented metallic bipolar plates for vanadium redox flow batteries

Laxman Kumar Kundarapu , M. Maruthi Prasanna , Sreenivas Jayanti
{"title":"Indented metallic bipolar plates for vanadium redox flow batteries","authors":"Laxman Kumar Kundarapu ,&nbsp;M. Maruthi Prasanna ,&nbsp;Sreenivas Jayanti","doi":"10.1016/j.nxener.2024.100201","DOIUrl":null,"url":null,"abstract":"<div><div>The standard industrial vanadium redox flow battery (VRFB) stack is made of thick graphite bipolar plates to support the flow field required for optimal circulation of electrolyte. These thick plates suffer from electrolyte seepage, poor mechanical properties, and high machining and processing costs. In the present study, we report on the use of metallic bipolar plates for the construction of the VRFB cell. We show, through comprehensive electrochemical and hydrodynamic investigations, that Hastelloy C276, a corrosion-resistant high Nickel alloy, is a suitable bipolar plate material in VRFB cells. We show further that surface texture modification, in the form of a mix of concave and convex spherical indentations on the metallic bipolar plate, can have beneficial effects on cell performance. Comparative experiments on medium-size cells of a nominal area of 440 cm<sup>2</sup> operating in the current density range of 75–125 mA/cm<sup>2</sup> show that discharge energy gains of 25% or higher can be obtained together with a 10–15% reduction in pressure drop in comparison with similar cells with flat bipolar plates. It is posited that the concave indentations spread over the entire area ensure uniform electrolyte circulation while regions of low and high electrode compression create flow channeling possibilities that lead to reduced pressure drop.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100201"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The standard industrial vanadium redox flow battery (VRFB) stack is made of thick graphite bipolar plates to support the flow field required for optimal circulation of electrolyte. These thick plates suffer from electrolyte seepage, poor mechanical properties, and high machining and processing costs. In the present study, we report on the use of metallic bipolar plates for the construction of the VRFB cell. We show, through comprehensive electrochemical and hydrodynamic investigations, that Hastelloy C276, a corrosion-resistant high Nickel alloy, is a suitable bipolar plate material in VRFB cells. We show further that surface texture modification, in the form of a mix of concave and convex spherical indentations on the metallic bipolar plate, can have beneficial effects on cell performance. Comparative experiments on medium-size cells of a nominal area of 440 cm2 operating in the current density range of 75–125 mA/cm2 show that discharge energy gains of 25% or higher can be obtained together with a 10–15% reduction in pressure drop in comparison with similar cells with flat bipolar plates. It is posited that the concave indentations spread over the entire area ensure uniform electrolyte circulation while regions of low and high electrode compression create flow channeling possibilities that lead to reduced pressure drop.
用于钒氧化还原液流电池的凹陷金属双极板
标准的工业钒氧化还原液流电池(VRFB)堆栈由厚石墨双极板制成,以支持电解液最佳循环所需的流场。这些厚板存在电解液渗漏、机械性能差以及加工和处理成本高等问题。在本研究中,我们报告了使用金属双极板建造 VRFB 电池的情况。通过全面的电化学和流体力学研究,我们发现哈氏合金 C276(一种耐腐蚀的高镍合金)是一种适用于 VRFB 电池的双极板材料。我们进一步证明,在金属双极板上以凹凸球形压痕混合的形式进行表面纹理修饰,可对电池性能产生有利影响。对标称面积为 440 cm2 的中型电池进行的比较实验表明,与采用平面双极板的类似电池相比,在电流密度为 75-125 mA/cm2 的范围内工作时,放电能量可提高 25% 或更高,压降也可降低 10-15%。据推测,遍布整个区域的凹陷压痕确保了电解液的均匀循环,而低电极压缩区域和高电极压缩区域则创造了导流的可能性,从而降低了压降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信