Aluminium bioavailability and toxicity disrupted chloroplast structure and inhibited inorganic carbon utilization and nutrient uptake in Vallisneria natans at acidic and alkaline pH
{"title":"Aluminium bioavailability and toxicity disrupted chloroplast structure and inhibited inorganic carbon utilization and nutrient uptake in Vallisneria natans at acidic and alkaline pH","authors":"","doi":"10.1016/j.envexpbot.2024.105997","DOIUrl":null,"url":null,"abstract":"<div><div><em>Vallisneria natans</em>, as submerged aquatic plants, face significant threats from aluminium (Al) toxicity. While the effects of Al at low pH on terrestrial plants have been extensively studied, there is a lack of research on the impacts of both low and high pH on chloroplast ultrastructure and nutrient uptake in submerged plants. This research is important as it aims to fill this gap by exposing the leaves of Vallisneria natans to 100 μM Al at varying pH levels (4.5, 5.5, 7.5, and 9.5) for 48 hours. The results showed that inorganic carbon (CT), CO<sub>2</sub>, and HCO<sub>3</sub> content increased at extreme pH levels (4.5 and 9.5), suggesting decreased inorganic carbon utilization under Al stress. Additionally, photosystem II efficiency and electron transport rate were significantly reduced at extreme pH levels, highlighting the sensitivity of V. natans to Al. Chlorophyll a and total chlorophyll content were significantly lower at pH 4.5 compared to pH 7.5. Chloroplast structural disruptions were evident at extreme pH levels coupled with Al exposure, whereas minimal injury was observed at pH 5.5 and 7.5. The study also noted vacuole enlargement, altered plasma membrane permeability, and hematoxylin staining, indicating Al accumulation in leaves. ICP analysis revealed increased Al content at extreme pH levels, underscoring heightened Al bioavailability and toxicity. Significant reductions in macro and micronutrient content (P, Mg, K, Fe, Zn, B, Mn) were observed, likely due to Al-induced root and cell damage and altered nutrient uptake. These findings emphasize the complex interplay between Al exposure, pH fluctuations, and their cascading effects on the physiology and elemental composition of <em>Vallisneria natans</em>, highlighting the need for further research and environmental management strategies.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003551","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vallisneria natans, as submerged aquatic plants, face significant threats from aluminium (Al) toxicity. While the effects of Al at low pH on terrestrial plants have been extensively studied, there is a lack of research on the impacts of both low and high pH on chloroplast ultrastructure and nutrient uptake in submerged plants. This research is important as it aims to fill this gap by exposing the leaves of Vallisneria natans to 100 μM Al at varying pH levels (4.5, 5.5, 7.5, and 9.5) for 48 hours. The results showed that inorganic carbon (CT), CO2, and HCO3 content increased at extreme pH levels (4.5 and 9.5), suggesting decreased inorganic carbon utilization under Al stress. Additionally, photosystem II efficiency and electron transport rate were significantly reduced at extreme pH levels, highlighting the sensitivity of V. natans to Al. Chlorophyll a and total chlorophyll content were significantly lower at pH 4.5 compared to pH 7.5. Chloroplast structural disruptions were evident at extreme pH levels coupled with Al exposure, whereas minimal injury was observed at pH 5.5 and 7.5. The study also noted vacuole enlargement, altered plasma membrane permeability, and hematoxylin staining, indicating Al accumulation in leaves. ICP analysis revealed increased Al content at extreme pH levels, underscoring heightened Al bioavailability and toxicity. Significant reductions in macro and micronutrient content (P, Mg, K, Fe, Zn, B, Mn) were observed, likely due to Al-induced root and cell damage and altered nutrient uptake. These findings emphasize the complex interplay between Al exposure, pH fluctuations, and their cascading effects on the physiology and elemental composition of Vallisneria natans, highlighting the need for further research and environmental management strategies.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.