{"title":"A novel approach for quantifying upper reservoir leakage","authors":"Wen-jie Yang , Yong Huang , Xiao-song Dong , Xu-feng Zhu , Zhong-bo Yu , Ke-han Miao","doi":"10.1016/j.wse.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>During the operational phases of the upper reservoir in a pumped storage power station, the water level, leakage area, and hydraulic gradient of the upper reservoir alter dynamically due to the cyclic pumping and draining activities. The rising groundwater level during storage introduces distinct leakage conditions within the reservoir basin, characterized by unsaturated, partially saturated, and saturated states. Consequently, reservoir basin leakage exhibits variability across these states. To address this issue, this study formulated rational assumptions corresponding to the three leakage states in a reservoir basin and derived analytical expressions for seepage calculation based on Darcy's law and the principles governing groundwater flow refraction. A case study was conducted to investigate the relationship between various factors and leakage. The results showed that leakage primarily depended on the permeability of the impermeable layer in the reservoir basin. The upper reservoir leakage was estimated, and the calculated leakage generally agreed with the measurements, offering insights into the leakage mechanism of the Liyang pumped storage power station. In addition, the reasons for disparities between measured and calculated leakage were analyzed, and the reliability of the developed method was validated. The findings of this study provide a foundation for the seepage control design of upstream reservoirs in similar projects.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 4","pages":"Pages 397-405"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
During the operational phases of the upper reservoir in a pumped storage power station, the water level, leakage area, and hydraulic gradient of the upper reservoir alter dynamically due to the cyclic pumping and draining activities. The rising groundwater level during storage introduces distinct leakage conditions within the reservoir basin, characterized by unsaturated, partially saturated, and saturated states. Consequently, reservoir basin leakage exhibits variability across these states. To address this issue, this study formulated rational assumptions corresponding to the three leakage states in a reservoir basin and derived analytical expressions for seepage calculation based on Darcy's law and the principles governing groundwater flow refraction. A case study was conducted to investigate the relationship between various factors and leakage. The results showed that leakage primarily depended on the permeability of the impermeable layer in the reservoir basin. The upper reservoir leakage was estimated, and the calculated leakage generally agreed with the measurements, offering insights into the leakage mechanism of the Liyang pumped storage power station. In addition, the reasons for disparities between measured and calculated leakage were analyzed, and the reliability of the developed method was validated. The findings of this study provide a foundation for the seepage control design of upstream reservoirs in similar projects.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.