An artifactual fibre overlap removal algorithm for micro-computed tomography image post-processing and 3D microstructure generation with graphics processing unit acceleration
IF 7.6 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"An artifactual fibre overlap removal algorithm for micro-computed tomography image post-processing and 3D microstructure generation with graphics processing unit acceleration","authors":"Yuheng Zhou , Zhengshu Yan , Pascal Hubert","doi":"10.1016/j.matdes.2024.113376","DOIUrl":null,"url":null,"abstract":"<div><div>A novel algorithm based on radial basis functions is proposed for the removal of artifactual fibre overlap within fibre structures extracted from micro-computed tomography (micro-CT) images of fibre reinforced polymer matrix composites. The proposed algorithm is highly efficient and excels in preserving the original fibre structures extracted from the micro-CT images. Besides, graphics processing unit (GPU) acceleration is applied to further enhance the efficiency of the fibre overlap removal process. Furthermore, the proposed algorithm is also modified for the generation of periodic 3D microstructures. For practical application, the proposed algorithm is implemented for both the artifactual fibre overlap removal within micro-CT images from an injection moulded part and the microstructure generation for 3D printed samples. The unidirectional elastic modulus of the resultant microstructures is computed via numerical simulations and shows a close match to the experimental measurements with relative errors less than 2%. Overall, the proposed algorithm significantly facilitates the reconstruction of micro-CT image-based numerical models and can also be easily repurposed to generate complex microstructures, which is of great value for the development of data-driven models for characterization and design of composite materials that demands large amounts of data on material microstructures.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113376"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007512","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel algorithm based on radial basis functions is proposed for the removal of artifactual fibre overlap within fibre structures extracted from micro-computed tomography (micro-CT) images of fibre reinforced polymer matrix composites. The proposed algorithm is highly efficient and excels in preserving the original fibre structures extracted from the micro-CT images. Besides, graphics processing unit (GPU) acceleration is applied to further enhance the efficiency of the fibre overlap removal process. Furthermore, the proposed algorithm is also modified for the generation of periodic 3D microstructures. For practical application, the proposed algorithm is implemented for both the artifactual fibre overlap removal within micro-CT images from an injection moulded part and the microstructure generation for 3D printed samples. The unidirectional elastic modulus of the resultant microstructures is computed via numerical simulations and shows a close match to the experimental measurements with relative errors less than 2%. Overall, the proposed algorithm significantly facilitates the reconstruction of micro-CT image-based numerical models and can also be easily repurposed to generate complex microstructures, which is of great value for the development of data-driven models for characterization and design of composite materials that demands large amounts of data on material microstructures.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.