Markus Wagner , Veronika Biegler , Sebastian Wurm , Georg Baumann , Tiina Nypelö , Alexander Bismarck , Florian Feist
{"title":"Pulp fibre foams: Morphology and mechanical performance","authors":"Markus Wagner , Veronika Biegler , Sebastian Wurm , Georg Baumann , Tiina Nypelö , Alexander Bismarck , Florian Feist","doi":"10.1016/j.compositesa.2024.108515","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose (pulp) fibre foams serve as bio-based alternative to fossil-based cellular lightweight materials. The mechanical properties of cellulose fibre foams are inferior compared with traditional polymer foams and available information is often limited to compression properties. We present a comprehensive analysis of cellulose fibre foams with densities ranging from 60 to 130 kg/m<sup>3</sup>, examining their compression, tensile, flexural, and shear properties. Key findings include a high mean zenithal fibre angle which decreases with increasing density, as well as a high strain rate amplification (SRA) in compressive strength, which also decreases with increasing density. With respect to formulation, the addition of carboxymethyl cellulose (CMC) enhanced fibre dispersion, bubble homogeneity of the wet foam, and dimensional stability of the end-product.</div><div>These results provide a foundation for numerical models and advance the understanding of cellulose pulp fibre foams, highlighting their potential for certain applications.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"188 ","pages":"Article 108515"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X2400513X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose (pulp) fibre foams serve as bio-based alternative to fossil-based cellular lightweight materials. The mechanical properties of cellulose fibre foams are inferior compared with traditional polymer foams and available information is often limited to compression properties. We present a comprehensive analysis of cellulose fibre foams with densities ranging from 60 to 130 kg/m3, examining their compression, tensile, flexural, and shear properties. Key findings include a high mean zenithal fibre angle which decreases with increasing density, as well as a high strain rate amplification (SRA) in compressive strength, which also decreases with increasing density. With respect to formulation, the addition of carboxymethyl cellulose (CMC) enhanced fibre dispersion, bubble homogeneity of the wet foam, and dimensional stability of the end-product.
These results provide a foundation for numerical models and advance the understanding of cellulose pulp fibre foams, highlighting their potential for certain applications.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.