Impregnation, dehydration and crosslinking of responsive organoboron polymer to generate smart gating membrane for multimolecular gradient separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Xinzhao Luo , Yaqi Dong , Liyuan Fan , Mengyao Zhao , Qian Wang , Haisheng Zhang , Qiang Zhang
{"title":"Impregnation, dehydration and crosslinking of responsive organoboron polymer to generate smart gating membrane for multimolecular gradient separation","authors":"Xinzhao Luo ,&nbsp;Yaqi Dong ,&nbsp;Liyuan Fan ,&nbsp;Mengyao Zhao ,&nbsp;Qian Wang ,&nbsp;Haisheng Zhang ,&nbsp;Qiang Zhang","doi":"10.1016/j.memsci.2024.123440","DOIUrl":null,"url":null,"abstract":"<div><div>Responsive materials have garnered increasing attention in the membrane separation field. However, fabricating smart gating membranes with tunable pore sizes to separate complex systems remains challenging. Herein, gating membranes with boroxine skeleton and temperature-tunable pores were successfully fabricated by fixing lower critical solution temperature (LCST)-type organoboron polymers (poly(N-isopropylacrylamide-<em>co</em>-glycidyl methacrylate/3-aminophenylboronic acid), PNG-APBA) onto the membrane surface <em>via</em> \"impregnation-dehydration-crosslinking\" strategy. The conformational behavior of the NIPAM-containing polymer chains (shrinking above LCST-stretching below LCST) serves as a functional gate, enabling the membranes to achieve reversibly tunable pore sizes and surface properties. The modified membranes exhibit gradient separation capabilities for small/medium/large molecules in complex polymer systems through temperature-tunable channels. The tunable pores also provided a potential tool for the high-selectivity separation of mixed proteins, such as lysozyme (LZM) and hemoglobin (Hb). Notably, the conformational behavior of the polymer chains endowed the membranes with excellent self-cleaning ability (<em>FRR</em>&gt; 99.5 %), while the boroxine network enhanced the grafting stability of the polymer chains, ensuring effective reversibility and repeatability of membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123440"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010342","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Responsive materials have garnered increasing attention in the membrane separation field. However, fabricating smart gating membranes with tunable pore sizes to separate complex systems remains challenging. Herein, gating membranes with boroxine skeleton and temperature-tunable pores were successfully fabricated by fixing lower critical solution temperature (LCST)-type organoboron polymers (poly(N-isopropylacrylamide-co-glycidyl methacrylate/3-aminophenylboronic acid), PNG-APBA) onto the membrane surface via "impregnation-dehydration-crosslinking" strategy. The conformational behavior of the NIPAM-containing polymer chains (shrinking above LCST-stretching below LCST) serves as a functional gate, enabling the membranes to achieve reversibly tunable pore sizes and surface properties. The modified membranes exhibit gradient separation capabilities for small/medium/large molecules in complex polymer systems through temperature-tunable channels. The tunable pores also provided a potential tool for the high-selectivity separation of mixed proteins, such as lysozyme (LZM) and hemoglobin (Hb). Notably, the conformational behavior of the polymer chains endowed the membranes with excellent self-cleaning ability (FRR> 99.5 %), while the boroxine network enhanced the grafting stability of the polymer chains, ensuring effective reversibility and repeatability of membranes.

Abstract Image

浸渍、脱水和交联反应性有机硼聚合物,生成用于多分子梯度分离的智能门控膜
响应材料在膜分离领域受到越来越多的关注。然而,制造具有可调孔径的智能选通膜以分离复杂系统仍具有挑战性。本文通过 "浸渍-脱水-交联 "策略,将低临界溶液温度(LCST)型有机硼聚合物(聚(N-异丙基丙烯酰胺-共缩水甘油基甲基丙烯酸酯/3-氨基苯基硼酸,PNG-APBA)固定在膜表面,成功制备了具有硼氧骨架和温度可调孔隙的选通膜。含有 NIPAM 的聚合物链的构象行为(高于 LCST 时收缩,低于 LCST 时拉伸)可作为功能门,使膜实现可逆的孔径大小和表面特性。改性膜通过温度可调的通道,在复杂的聚合物体系中实现了小分子/中分子/大分子的梯度分离能力。可调孔还为溶菌酶(LZM)和血红蛋白(Hb)等混合蛋白质的高选择性分离提供了一种潜在工具。值得注意的是,聚合物链的构象行为赋予了膜出色的自清洁能力(FRR> 99.5 %),而硼氧网络增强了聚合物链的接枝稳定性,确保了膜的有效可逆性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信