Ultrafast and energy-efficient flowthrough capture of antibiotics through a reusable MOF@wood membrane adsorbent

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yaqin Zhu , Gaigai Duan , Weijie Wu , Yanbo Liu , Shiyi Zeng , Haoqi Yang , Xiaoshuai Han , Shuijian He , Chunmei Zhang , Jingquan Han , Shaohua Jiang
{"title":"Ultrafast and energy-efficient flowthrough capture of antibiotics through a reusable MOF@wood membrane adsorbent","authors":"Yaqin Zhu ,&nbsp;Gaigai Duan ,&nbsp;Weijie Wu ,&nbsp;Yanbo Liu ,&nbsp;Shiyi Zeng ,&nbsp;Haoqi Yang ,&nbsp;Xiaoshuai Han ,&nbsp;Shuijian He ,&nbsp;Chunmei Zhang ,&nbsp;Jingquan Han ,&nbsp;Shaohua Jiang","doi":"10.1016/j.memsci.2024.123411","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of antibiotics in aquatic environments poses escalating risks to both ecosystems and human health. However, current water remediation strategies are hampered by numerous limitations, especially in operating costs and processing efficiency. Herein, the MIL-100(Fe)@wood membrane with high metal-organic frameworks (MOFs) loading is prepared by a simple flow-based fabrication technique. The presented integrated water purification system comprising membrane preparation, antibiotic removal and membrane regeneration allows for the sequential and continuous execution of the individual processes, thereby improving the sustainability, time efficiency and energy efficiency of the system. The highly efficient and flowthrough capturing membranes (MIL-100(Fe)@wood) are reported to remove numerous common antibiotics from water: tetracycline (TC), ciprofloxacin (CIP), amoxicillin (AMX), roxithromycin (RXM), and sulfamethazine (SMT). The stability and excellent long-term performance under different pH environmental conditions of MIL-100(Fe)@wood are demonstrated. Furthermore, the removal mechanisms of the multimolecular interactions occurring between antibiotic and MIL-100(Fe)@wood have also been explored. The unique advantage of MIL-100(Fe)@wood is employed in sustainable, cost-effective, and facile strategies for the removal of antibiotics.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123411"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010056","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of antibiotics in aquatic environments poses escalating risks to both ecosystems and human health. However, current water remediation strategies are hampered by numerous limitations, especially in operating costs and processing efficiency. Herein, the MIL-100(Fe)@wood membrane with high metal-organic frameworks (MOFs) loading is prepared by a simple flow-based fabrication technique. The presented integrated water purification system comprising membrane preparation, antibiotic removal and membrane regeneration allows for the sequential and continuous execution of the individual processes, thereby improving the sustainability, time efficiency and energy efficiency of the system. The highly efficient and flowthrough capturing membranes (MIL-100(Fe)@wood) are reported to remove numerous common antibiotics from water: tetracycline (TC), ciprofloxacin (CIP), amoxicillin (AMX), roxithromycin (RXM), and sulfamethazine (SMT). The stability and excellent long-term performance under different pH environmental conditions of MIL-100(Fe)@wood are demonstrated. Furthermore, the removal mechanisms of the multimolecular interactions occurring between antibiotic and MIL-100(Fe)@wood have also been explored. The unique advantage of MIL-100(Fe)@wood is employed in sustainable, cost-effective, and facile strategies for the removal of antibiotics.

Abstract Image

通过可重复使用的 MOF@wood 膜吸附剂超快、高效地捕获抗生素
抗生素在水生环境中的积累对生态系统和人类健康都构成了不断升级的风险。然而,目前的水处理策略受到诸多限制,尤其是在运营成本和处理效率方面。本文通过一种简单的流式制备技术,制备了具有高金属有机框架(MOFs)负载的 MIL-100(Fe)@wood 膜。所介绍的集成水纯化系统包括膜制备、抗生素去除和膜再生,可按顺序连续执行各个过程,从而提高系统的可持续性、时间效率和能源效率。据报道,这种高效的穿流捕捉膜(MIL-100(Fe)@wood)可以去除水中的多种常见抗生素:四环素(TC)、环丙沙星(CIP)、阿莫西林(AMX)、罗红霉素(RXM)和磺胺甲基嘧啶(SMT)。结果表明,MIL-100(Fe)@wood 在不同 pH 值的环境条件下具有稳定性和出色的长期性能。此外,还探讨了抗生素与 MIL-100(Fe)@wood 之间发生的多分子相互作用的去除机制。MIL-100(Fe)@wood的独特优势可用于可持续、经济高效、简便易行的抗生素去除策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信