Zwitterionic covalent organic framework membranes for efficient liquid molecular separations

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Ye Zhang , Mengqing Liu , Yifan Wu , Jing Zhao , Guangfeng Liu , Shiyuan Zhou , Peng Wang , Peiyang Gu
{"title":"Zwitterionic covalent organic framework membranes for efficient liquid molecular separations","authors":"Ye Zhang ,&nbsp;Mengqing Liu ,&nbsp;Yifan Wu ,&nbsp;Jing Zhao ,&nbsp;Guangfeng Liu ,&nbsp;Shiyuan Zhou ,&nbsp;Peng Wang ,&nbsp;Peiyang Gu","doi":"10.1016/j.memsci.2024.123433","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) featuring uniform topological structure and devisable functionality have emerged as promising membrane materials. The design and precise manipulation of COF membranes with advanced spatial structure to achieve efficient liquid molecular separations are of great necessity. Herein, zwitterionic COF membranes have been in-situ fabricated on porous polymeric substrates using an interfacial polymerization modification strategy. The continuous defect-free COF membranes with two-dimensional in-plane dominant growth can be achieved by optimizing the fabrication parameters including reaction time, monomer concentration, and catalyst concentration. Subsequent zwitterionic modification thereon not only favors the formation of hydrophilic surface but also improves the sieving capability by sheltering effect. Attributed to the synergistic contribution, the optimized zwitterionic COF membrane possesses a superior separation factor of 2839 with the water content in the permeate up to 99.7 wt%, while maintaining a comparable permeation flux of 3309 g m<sup>−2</sup> h<sup>−1</sup> during the ethanol dehydration process, outperforming most of other representative membranes. Furthermore, the excellent durability of the zwitterionic COF membrane in the ethanol dehydration process and its efficient separation performance towards other alcohol dehydration systems demonstrate its potential practical applications. The easy scalability of the fabrication and regulation method offers crucial guidance for the engineering of advanced COF membranes in efficient liquid molecular separations.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123433"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010275","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) featuring uniform topological structure and devisable functionality have emerged as promising membrane materials. The design and precise manipulation of COF membranes with advanced spatial structure to achieve efficient liquid molecular separations are of great necessity. Herein, zwitterionic COF membranes have been in-situ fabricated on porous polymeric substrates using an interfacial polymerization modification strategy. The continuous defect-free COF membranes with two-dimensional in-plane dominant growth can be achieved by optimizing the fabrication parameters including reaction time, monomer concentration, and catalyst concentration. Subsequent zwitterionic modification thereon not only favors the formation of hydrophilic surface but also improves the sieving capability by sheltering effect. Attributed to the synergistic contribution, the optimized zwitterionic COF membrane possesses a superior separation factor of 2839 with the water content in the permeate up to 99.7 wt%, while maintaining a comparable permeation flux of 3309 g m−2 h−1 during the ethanol dehydration process, outperforming most of other representative membranes. Furthermore, the excellent durability of the zwitterionic COF membrane in the ethanol dehydration process and its efficient separation performance towards other alcohol dehydration systems demonstrate its potential practical applications. The easy scalability of the fabrication and regulation method offers crucial guidance for the engineering of advanced COF membranes in efficient liquid molecular separations.

Abstract Image

用于高效液体分子分离的共价离子有机框架膜
具有均匀拓扑结构和可设计功能的共价有机框架(COFs)已成为前景广阔的膜材料。设计和精确操纵具有先进空间结构的 COF 膜以实现高效的液体分子分离是非常必要的。本文采用界面聚合改性策略,在多孔聚合物基底上原位制备了齐聚物 COF 膜。通过优化包括反应时间、单体浓度和催化剂浓度在内的制备参数,可以制备出具有二维面内优势生长的连续无缺陷 COF 膜。随后对其进行的齐聚物改性不仅有利于形成亲水性表面,还能通过遮蔽效应提高筛分能力。由于协同作用,优化后的 Zwitterionic COF 膜在乙醇脱水过程中,在渗透物含水量高达 99.7 wt% 的情况下,分离因子高达 2839,同时保持了 3309 g m-2 h-1 的可比渗透通量,优于大多数其他代表性膜。此外,两性离子 COF 膜在乙醇脱水过程中的出色耐久性及其对其他酒精脱水系统的高效分离性能也证明了其潜在的实际应用价值。制造和调节方法的易扩展性为先进 COF 膜在高效液体分子分离中的工程应用提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信