The displacement behaviors of CH4-containing anthracite under various injection pressures: The critical role of mineral dissolution and precipitation

0 ENERGY & FUELS
Wenyu Fu , Yunzhong Jia , Zhaolong Ge , Chenqing Shang , Xinge Zhao
{"title":"The displacement behaviors of CH4-containing anthracite under various injection pressures: The critical role of mineral dissolution and precipitation","authors":"Wenyu Fu ,&nbsp;Yunzhong Jia ,&nbsp;Zhaolong Ge ,&nbsp;Chenqing Shang ,&nbsp;Xinge Zhao","doi":"10.1016/j.jgsce.2024.205480","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of CH<sub>4</sub>-containing anthracite replacement and storage efficiency under supercritical CO<sub>2</sub> (Sc-CO<sub>2</sub>) injection is crucial for enhancing both coalbed methane production and CO<sub>2</sub> geological storage. This study investigates pore structure evolution, mineral dissolution/precipitation characteristics, and their effects on adsorption behavior and storage efficiency at various injection pressures using GC, LT-N<sub>2</sub>, SEM-EDS, and XRD analyses. Results show increased CH<sub>4</sub> adsorption in CH<sub>4</sub>-containing anthracite due to CO<sub>2</sub> injection, influenced by injection pressure. The highest storage efficiencies of 24.95% and 24.36% were observed at 7.59 MPa and 10.81 MPa, respectively. Adsorption selectivity shifts from CH<sub>4</sub> to CO<sub>2</sub> with increasing pressure (&gt;10.81 MPa). Injection pressure affects specific surface area (SSA) and pore volume (PV), reducing them by 7.16% and 25.68%, respectively. Fractal dimension <em>D</em><sub><em>L2</em></sub> exceeds <em>D</em><sub><em>L1</em></sub> and decreases gradually. Silicate mineral surfaces become rough, which causes irregular cracks. Meanwhile, secondary precipitation consists mainly of carbonate minerals. Micropores exhibit lower non-homogeneity than mesopores, and overall pore structure complexity diminishes. Mineral dissolution/precipitation mechanisms expand storage space and enhance Sc-CO<sub>2</sub> interaction with CH<sub>4</sub>-containing anthracite. These findings provide new insights into displacement behaviors of CH<sub>4</sub>-containing anthracite seams after CO<sub>2</sub> injection, which can be valuable for guiding efficient injection of CO<sub>2</sub>-ECBM.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"131 ","pages":"Article 205480"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908924002760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of CH4-containing anthracite replacement and storage efficiency under supercritical CO2 (Sc-CO2) injection is crucial for enhancing both coalbed methane production and CO2 geological storage. This study investigates pore structure evolution, mineral dissolution/precipitation characteristics, and their effects on adsorption behavior and storage efficiency at various injection pressures using GC, LT-N2, SEM-EDS, and XRD analyses. Results show increased CH4 adsorption in CH4-containing anthracite due to CO2 injection, influenced by injection pressure. The highest storage efficiencies of 24.95% and 24.36% were observed at 7.59 MPa and 10.81 MPa, respectively. Adsorption selectivity shifts from CH4 to CO2 with increasing pressure (>10.81 MPa). Injection pressure affects specific surface area (SSA) and pore volume (PV), reducing them by 7.16% and 25.68%, respectively. Fractal dimension DL2 exceeds DL1 and decreases gradually. Silicate mineral surfaces become rough, which causes irregular cracks. Meanwhile, secondary precipitation consists mainly of carbonate minerals. Micropores exhibit lower non-homogeneity than mesopores, and overall pore structure complexity diminishes. Mineral dissolution/precipitation mechanisms expand storage space and enhance Sc-CO2 interaction with CH4-containing anthracite. These findings provide new insights into displacement behaviors of CH4-containing anthracite seams after CO2 injection, which can be valuable for guiding efficient injection of CO2-ECBM.
含 CH4 无烟煤在不同注入压力下的置换行为:矿物溶解和沉淀的关键作用
准确预测超临界二氧化碳(Sc-CO2)注入条件下含 CH4 无烟煤的置换和封存效率对于提高煤层气产量和二氧化碳地质封存至关重要。本研究采用气相色谱、LT-N2、扫描电镜-电子显微镜和 XRD 分析方法,研究了孔隙结构演变、矿物溶解/沉淀特征及其在不同注入压力下对吸附行为和封存效率的影响。结果表明,由于注入二氧化碳,含CH4无烟煤中的CH4吸附量增加,并受注入压力的影响。在 7.59 兆帕和 10.81 兆帕时,分别观察到 24.95% 和 24.36% 的最高储存效率。随着压力的增加(10.81 兆帕),吸附选择性从 CH4 转向 CO2。注入压力会影响比表面积(SSA)和孔隙体积(PV),使其分别减少 7.16% 和 25.68%。分形维度 DL2 超过 DL1 并逐渐减小。硅酸盐矿物表面变得粗糙,从而产生不规则裂缝。同时,二次沉淀主要由碳酸盐矿物组成。微孔的非均质性低于中孔,整体孔隙结构的复杂性降低。矿物溶解/沉淀机制扩大了存储空间,增强了 Sc-CO2 与含 CH4 无烟煤的相互作用。这些发现为含CH4无烟煤层在注入CO2后的位移行为提供了新的见解,对指导CO2-ECBM的有效注入具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信