Low-velocity impact response of hybrid sheet moulding compound composite laminates

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
James Pheysey , Ramon Del Cuvillo , Fernando Naya , Jesus Pernas-Sanchez , Francesco De Cola , Francisca Martinez-Hergueta
{"title":"Low-velocity impact response of hybrid sheet moulding compound composite laminates","authors":"James Pheysey ,&nbsp;Ramon Del Cuvillo ,&nbsp;Fernando Naya ,&nbsp;Jesus Pernas-Sanchez ,&nbsp;Francesco De Cola ,&nbsp;Francisca Martinez-Hergueta","doi":"10.1016/j.compositesa.2024.108527","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comprehensive study on the impact damage tolerance of Sheet Moulding Compounds (SMCs). The performance of glass, carbon and hybrid glass/carbon SMCs are compared by means of tensile, compression, low-velocity impact and compression after impact experiments. Damage analysis of the impacted laminates was performed by ultrasonic and X-ray methodologies. The glass SMC exhibited the highest damage tolerance in low-velocity impact with the smallest damaged area, crack density and loss in compression after impact (CAI) strength. On the other hand, the carbon SMC demonstrated superior in-plane stiffness and strength, but exhibited a large damaged area and crack density under impact. The hybrid SMC displayed an optimal compromise, exhibiting intermediate tensile in-plane performance and excellent damage tolerance at lower impact energy levels, but suffered from extensive delamination at the highest impact energy. Overall, the findings highlight the suitability of hybrid SMCs for structural applications with potential impact risks.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"188 ","pages":"Article 108527"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive study on the impact damage tolerance of Sheet Moulding Compounds (SMCs). The performance of glass, carbon and hybrid glass/carbon SMCs are compared by means of tensile, compression, low-velocity impact and compression after impact experiments. Damage analysis of the impacted laminates was performed by ultrasonic and X-ray methodologies. The glass SMC exhibited the highest damage tolerance in low-velocity impact with the smallest damaged area, crack density and loss in compression after impact (CAI) strength. On the other hand, the carbon SMC demonstrated superior in-plane stiffness and strength, but exhibited a large damaged area and crack density under impact. The hybrid SMC displayed an optimal compromise, exhibiting intermediate tensile in-plane performance and excellent damage tolerance at lower impact energy levels, but suffered from extensive delamination at the highest impact energy. Overall, the findings highlight the suitability of hybrid SMCs for structural applications with potential impact risks.
混合片状模塑复合材料层压板的低速冲击响应
本研究对片状模塑料(SMC)的抗冲击损伤能力进行了全面研究。通过拉伸、压缩、低速冲击和冲击后压缩实验,比较了玻璃、碳和玻璃/碳混合 SMC 的性能。通过超声波和 X 射线方法对冲击层压板进行了损伤分析。在低速冲击中,玻璃 SMC 的损伤容限最高,损伤面积、裂纹密度和冲击后压缩强度(CAI)损失最小。另一方面,碳纤维 SMC 表现出更高的面内刚度和强度,但在冲击下的损坏面积和裂纹密度较大。混合 SMC 表现出最佳的折衷效果,在较低的冲击能量水平下,表现出中等的面内拉伸性能和出色的损坏耐受性,但在最高的冲击能量下,会出现大面积分层。总之,研究结果凸显了混合 SMC 在具有潜在冲击风险的结构应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信