H. Bouandas , Y. Slimani , A. Bakhouche , N. Bioud , A. Djemli , Faisal Katib Alanazi , I. Bouchama , M.A. Ghebouli , M. Fatmi , T. Chihi
{"title":"Ultra-sensitivity of surface plasmon resonance sensor using halide perovskite FASnI3 and 2D materials on Cu thin films","authors":"H. Bouandas , Y. Slimani , A. Bakhouche , N. Bioud , A. Djemli , Faisal Katib Alanazi , I. Bouchama , M.A. Ghebouli , M. Fatmi , T. Chihi","doi":"10.1016/j.rinp.2024.108004","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies a novel surface plasmon resonance (SPR) biosensor using a BK7 glass prism, a copper (Cu) metal plasmonic layer, which combine a halide perovskite (FASnI3) with two-dimensional (2D) materials such as phosphorus black, graphene and TMDC (MoS<sub>2</sub>, MoSe<sub>2</sub>, WS<sub>2</sub>, WSe<sub>2</sub>) for the detection of breast cancer cells. We have optimized the thickness of each layer in order to obtain maximum sensitivity. A numerical study mainly uses the transfer matrix principle, while the attenuation total reflection method involves examining the reflection properties. The evaluation of SPR biosensor configurations serves to obtain optimal performance. The simulation results indicate that the integration of halide perovskite (FASnI3) and 2D materials into the BK7/Cu/medium sensing structure significantly improves the sensitivity and figure of merit (ZT). The outstanding results in terms of sensor performance characteristics are observed in the BK7/Cu (48 nm)/FASnI3 (5 nm)/BP (0.53 nm) configuration. The figure of merit and sensitivity estimated at 123.11 RIU<sup>−1</sup> and 459.28°/RIU, with a notable improvement of 338.45 %.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"66 ","pages":"Article 108004"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006892","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies a novel surface plasmon resonance (SPR) biosensor using a BK7 glass prism, a copper (Cu) metal plasmonic layer, which combine a halide perovskite (FASnI3) with two-dimensional (2D) materials such as phosphorus black, graphene and TMDC (MoS2, MoSe2, WS2, WSe2) for the detection of breast cancer cells. We have optimized the thickness of each layer in order to obtain maximum sensitivity. A numerical study mainly uses the transfer matrix principle, while the attenuation total reflection method involves examining the reflection properties. The evaluation of SPR biosensor configurations serves to obtain optimal performance. The simulation results indicate that the integration of halide perovskite (FASnI3) and 2D materials into the BK7/Cu/medium sensing structure significantly improves the sensitivity and figure of merit (ZT). The outstanding results in terms of sensor performance characteristics are observed in the BK7/Cu (48 nm)/FASnI3 (5 nm)/BP (0.53 nm) configuration. The figure of merit and sensitivity estimated at 123.11 RIU−1 and 459.28°/RIU, with a notable improvement of 338.45 %.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.