{"title":"Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8-O-methylfusarubin for breast cancer treatment","authors":"Kamonlatth Rodponthukwaji , Suyanee Thongchot , Suttikiat Deureh , Tanva Thongkleang , Mattika Thaweesuvannasak , Kornrawee Srichan , Chatchawan Srisawat , Peti Thuwajit , Kytai T. Nguyen , Kwanruthai Tadpetch , Chanitra Thuwajit , Primana Punnakitikashem","doi":"10.1016/j.ijpx.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-<em>O</em>-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100294"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000665","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-O-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.