Counting spanning trees of multiple complete split-like graph containing a given spanning forest

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"Counting spanning trees of multiple complete split-like graph containing a given spanning forest","authors":"","doi":"10.1016/j.disc.2024.114300","DOIUrl":null,"url":null,"abstract":"<div><div>The multiple complete split-like graph <span><math><mi>M</mi><mi>C</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>a</mi></mrow></msubsup></math></span> is the join of an empty graph <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <em>s</em> copies of complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>. In this article, we obtain the formulas for the number of spanning trees of <span><math><mi>M</mi><mi>C</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>a</mi></mrow></msubsup></math></span> containing a given spanning forest when <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span> and 2. Particularly, when <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>, our result derives the number of spanning trees of complete split graph containing a given spanning forest, thereby extending Moon's result <span><span>[19]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400431X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The multiple complete split-like graph MCSb,sa is the join of an empty graph Ka and s copies of complete graph Kb. In this article, we obtain the formulas for the number of spanning trees of MCSb,sa containing a given spanning forest when s=1 and 2. Particularly, when s=1, our result derives the number of spanning trees of complete split graph containing a given spanning forest, thereby extending Moon's result [19].
对包含给定生成林的多个完整分裂样图的生成树进行计数
多重完整分裂样图 MCSb,sa 是空图 K‾a 和完整图 Kb 的 s 个副本的连接。在本文中,我们得到了当 s=1 和 2 时,MCSb,sa 中包含给定生成林的生成树的数量公式。特别是当 s=1 时,我们的结果推导出了包含给定生成林的完整分裂图的生成树数,从而扩展了 Moon 的结果 [19]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信