Rongchen Zhu , Xuewen Tong , Yuhan Du , Jiahua Liu , Xuefei Xu , Yang He , Liankui Wen , Zhitong Wang
{"title":"Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway","authors":"Rongchen Zhu , Xuewen Tong , Yuhan Du , Jiahua Liu , Xuefei Xu , Yang He , Liankui Wen , Zhitong Wang","doi":"10.1016/j.pestbp.2024.106172","DOIUrl":null,"url":null,"abstract":"<div><div>The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"205 ","pages":"Article 106172"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004835752400405X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.