{"title":"Reducing uncertainty of building shape information in urban building energy modeling using Bayesian calibration","authors":"Jeongyun Hwang , Hyunwoo Lim , Jongyeon Lim","doi":"10.1016/j.scs.2024.105895","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes urban building energy modeling that extends beyond single-building-level models to the urban level. However, most urban building energy models use representative buildings that may not accurately reflect the diversity of building shapes, systems, and envelope performance when conducting building energy evaluations at the urban scale. To address this issue, previous studies have utilized representative buildings and Bayesian calibration to estimate uncertain building information parameters without considering building shape information. Therefore, the primary objective of this study is to estimate building shape information using artificial neural networks and Bayesian calibration based on building energy consumption data to identify the shape information uncertainty of representative buildings. The results indicate that some shape information can be estimated by comparing the overall distribution of the building stock using the two-sample Kolmogorov–Smirnov test. Furthermore, we found that the proposed energy modeling methodology yields energy consumption patterns similar to those of the target building stock. This preliminary investigation addresses the uncertainty of representative buildings in urban-scale modeling, elucidates the relationship between building form and energy consumption, and introduces a method for inferring shape information from energy consumption data.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"116 ","pages":"Article 105895"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007194","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes urban building energy modeling that extends beyond single-building-level models to the urban level. However, most urban building energy models use representative buildings that may not accurately reflect the diversity of building shapes, systems, and envelope performance when conducting building energy evaluations at the urban scale. To address this issue, previous studies have utilized representative buildings and Bayesian calibration to estimate uncertain building information parameters without considering building shape information. Therefore, the primary objective of this study is to estimate building shape information using artificial neural networks and Bayesian calibration based on building energy consumption data to identify the shape information uncertainty of representative buildings. The results indicate that some shape information can be estimated by comparing the overall distribution of the building stock using the two-sample Kolmogorov–Smirnov test. Furthermore, we found that the proposed energy modeling methodology yields energy consumption patterns similar to those of the target building stock. This preliminary investigation addresses the uncertainty of representative buildings in urban-scale modeling, elucidates the relationship between building form and energy consumption, and introduces a method for inferring shape information from energy consumption data.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;