{"title":"On certain maximal curves related to Chebyshev polynomials","authors":"Guilherme Dias , Saeed Tafazolian , Jaap Top","doi":"10.1016/j.ffa.2024.102521","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies curves defined using Chebyshev polynomials <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> over finite fields. Given the hyperelliptic curve <span><math><mi>C</mi></math></span> corresponding to the equation <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, the prime powers <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span> are determined such that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is separable and <span><math><mi>C</mi></math></span> is maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This extends a result from <span><span>[30]</span></span> that treats the special cases <span><math><mn>2</mn><mo>|</mo><mi>d</mi></math></span> as well as <em>d</em> a prime number. In particular a proof of <span><span>[30, Conjecture 1.7]</span></span> is presented. Moreover, we give a complete description of the pairs <span><math><mo>(</mo><mi>d</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that the projective closure of the plane curve defined by <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> is smooth and maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>.</div><div>A number of analogous maximality results are discussed.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001606","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies curves defined using Chebyshev polynomials over finite fields. Given the hyperelliptic curve corresponding to the equation , the prime powers are determined such that is separable and is maximal over . This extends a result from [30] that treats the special cases as well as d a prime number. In particular a proof of [30, Conjecture 1.7] is presented. Moreover, we give a complete description of the pairs such that the projective closure of the plane curve defined by is smooth and maximal over .
A number of analogous maximality results are discussed.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.