New constructions of permutation polynomials of the form x+γTrqq2(h(x)) over finite fields with even characteristic

IF 1.2 3区 数学 Q1 MATHEMATICS
Sha Jiang, Mu Yuan, Kangquan Li, Longjiang Qu
{"title":"New constructions of permutation polynomials of the form x+γTrqq2(h(x)) over finite fields with even characteristic","authors":"Sha Jiang,&nbsp;Mu Yuan,&nbsp;Kangquan Li,&nbsp;Longjiang Qu","doi":"10.1016/j.ffa.2024.102522","DOIUrl":null,"url":null,"abstract":"<div><div>Permutation polynomials over finite fields are widely used in cryptography, coding theory, and combinatorial design. Particularly, permutation polynomials of the form <span><math><mi>x</mi><mo>+</mo><mi>γ</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msubsup><mo>(</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> have been studied by many researchers and applied to lift minimal blocking sets. In this paper, we further investigate permutation polynomials of the form <span><math><mi>x</mi><mo>+</mo><mi>γ</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msubsup><mo>(</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> over finite fields with even characteristic. On the one hand, guided by the idea of choosing functions <em>h</em> with a low <em>q</em>-degree, we completely determine the sufficient and necessary conditions of <em>γ</em> for six classes of polynomials of the form <span><math><mi>x</mi><mo>+</mo><mi>γ</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msubsup><mo>(</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>4</mn></math></span>) to be permutations. These results determine the sizes of directions of these six functions, which is generally difficult. On the other hand, we slightly generalize the above idea and construct other six classes of permutation polynomials of the form <span><math><mi>x</mi><mo>+</mo><mi>γ</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msubsup><mo>(</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>4</mn></math></span>). We believe that more results about permutation polynomials of the form <span><math><mi>x</mi><mo>+</mo><mi>γ</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msubsup><mo>(</mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> can be obtained by exploiting this idea.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001618","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Permutation polynomials over finite fields are widely used in cryptography, coding theory, and combinatorial design. Particularly, permutation polynomials of the form x+γTrqqn(h(x)) have been studied by many researchers and applied to lift minimal blocking sets. In this paper, we further investigate permutation polynomials of the form x+γTrqq2(h(x)) over finite fields with even characteristic. On the one hand, guided by the idea of choosing functions h with a low q-degree, we completely determine the sufficient and necessary conditions of γ for six classes of polynomials of the form x+γTrqq2(h(x)) with h(x)=c1x+c2x2+c3x3+c4xq+2 and ciF2 (i=1,,4) to be permutations. These results determine the sizes of directions of these six functions, which is generally difficult. On the other hand, we slightly generalize the above idea and construct other six classes of permutation polynomials of the form x+γTrqq2(h(x)) with h(x)=c1x+c2x2+c3x3+c4xq+2+x2q1 and ciF2 (i=1,,4). We believe that more results about permutation polynomials of the form x+γTrqq2(h(x)) can be obtained by exploiting this idea.
偶特征有限域上 x+γTrqq2(h(x)) 形式置换多项式的新构造
有限域上的置换多项式被广泛应用于密码学、编码理论和组合设计中。特别是形式为 x+γTrqqn(h(x)) 的置换多项式已被许多研究人员研究并应用于提升最小阻塞集。本文将进一步研究偶特征有限域上的 x+γTrqq2(h(x))形式的置换多项式。一方面,在选择低 q 阶函数 h 的思想指导下,我们完全确定了六类形式为 x+γTrqq2(h(x))的多项式的 γ 的充分条件和必要条件,其中 h(x)=c1x+c2x2+c3x3+c4xq+2 且 ci∈F2 (i=1,...,4) 为置换。这些结果确定了这六个函数的方向大小,这通常是很困难的。另一方面,我们将上述想法稍作推广,构造了其他六类形式为 x+γTrqq2(h(x)) 的置换多项式,其中 h(x)=c1x+c2x2+c3x3+c4xq+2+x2q-1 和 ci∈F2 (i=1,...,4) 。我们相信,利用这一思想可以得到更多关于 x+γTrqq2(h(x)) 形式的置换多项式的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信