An approach to normal polynomials through symmetrization and symmetric reduction

IF 1.2 3区 数学 Q1 MATHEMATICS
Darien Connolly , Calvin George , Xiang-dong Hou , Adam Madro , Vincenzo Pallozzi Lavorante
{"title":"An approach to normal polynomials through symmetrization and symmetric reduction","authors":"Darien Connolly ,&nbsp;Calvin George ,&nbsp;Xiang-dong Hou ,&nbsp;Adam Madro ,&nbsp;Vincenzo Pallozzi Lavorante","doi":"10.1016/j.ffa.2024.102525","DOIUrl":null,"url":null,"abstract":"<div><div>An irreducible polynomial <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> of degree <em>n</em> is <em>normal</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> if and only if its roots <span><math><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup></math></span> satisfy the condition <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> circulant determinant. By finding a suitable <em>symmetrization</em> of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (A multiple of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which is symmetric in <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>), we obtain a condition on the coefficients of <em>f</em> that is sufficient for <em>f</em> to be normal. This approach works well for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span> but encounters computational difficulties when <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>. In the present paper, we consider irreducible polynomials of the form <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and 7, by an indirect method, we are able to find simple conditions on <em>a</em> that are sufficient for <em>f</em> to be normal. In a more general context, we also explore the normal polynomials of a finite Galois extension through the irreducible characters of the Galois group.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102525"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001643","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An irreducible polynomial fFq[X] of degree n is normal over Fq if and only if its roots r,rq,,rqn1 satisfy the condition Δn(r,rq,,rqn1)0, where Δn(X0,,Xn1) is the n×n circulant determinant. By finding a suitable symmetrization of Δn (A multiple of Δn which is symmetric in X0,,Xn1), we obtain a condition on the coefficients of f that is sufficient for f to be normal. This approach works well for n5 but encounters computational difficulties when n6. In the present paper, we consider irreducible polynomials of the form f=Xn+Xn1+aFq[X]. For n=6 and 7, by an indirect method, we are able to find simple conditions on a that are sufficient for f to be normal. In a more general context, we also explore the normal polynomials of a finite Galois extension through the irreducible characters of the Galois group.
通过对称化和对称还原实现正多项式的方法
当且仅当一个阶数为 n 的不可减多项式 f∈Fq[X] 的根 r,rq,...,rqn-1满足条件 Δn(r,rq,...,rqn-1)≠0,其中 Δn(X0,...,Xn-1)是 n×n 循环行列式时,这个 f∈Fq[X] 在 Fq 上是正常的。通过找到 Δn 的合适对称性(在 X0,...,Xn-1 中对称的 Δn 的倍数),我们就能得到 f 的系数条件,该条件足以保证 f 是正态的。这种方法在 n≤5 时效果很好,但在 n≥6 时遇到了计算上的困难。在本文中,我们考虑 f=Xn+Xn-1+a∈Fq[X] 形式的不可约多项式。对于 n=6 和 7,通过间接方法,我们能够找到关于 a 的简单条件,这些条件足以使 f 成为正多边形。在更一般的情况下,我们还通过伽罗瓦群的不可还原字符来探索有限伽罗瓦扩展的正多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信