Darien Connolly , Calvin George , Xiang-dong Hou , Adam Madro , Vincenzo Pallozzi Lavorante
{"title":"An approach to normal polynomials through symmetrization and symmetric reduction","authors":"Darien Connolly , Calvin George , Xiang-dong Hou , Adam Madro , Vincenzo Pallozzi Lavorante","doi":"10.1016/j.ffa.2024.102525","DOIUrl":null,"url":null,"abstract":"<div><div>An irreducible polynomial <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> of degree <em>n</em> is <em>normal</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> if and only if its roots <span><math><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup></math></span> satisfy the condition <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>)</mo><mo>≠</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> circulant determinant. By finding a suitable <em>symmetrization</em> of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (A multiple of <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which is symmetric in <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>), we obtain a condition on the coefficients of <em>f</em> that is sufficient for <em>f</em> to be normal. This approach works well for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span> but encounters computational difficulties when <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>. In the present paper, we consider irreducible polynomials of the form <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and 7, by an indirect method, we are able to find simple conditions on <em>a</em> that are sufficient for <em>f</em> to be normal. In a more general context, we also explore the normal polynomials of a finite Galois extension through the irreducible characters of the Galois group.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102525"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001643","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An irreducible polynomial of degree n is normal over if and only if its roots satisfy the condition , where is the circulant determinant. By finding a suitable symmetrization of (A multiple of which is symmetric in ), we obtain a condition on the coefficients of f that is sufficient for f to be normal. This approach works well for but encounters computational difficulties when . In the present paper, we consider irreducible polynomials of the form . For and 7, by an indirect method, we are able to find simple conditions on a that are sufficient for f to be normal. In a more general context, we also explore the normal polynomials of a finite Galois extension through the irreducible characters of the Galois group.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.