Kaitlynn M. Fitzgerald , Jay D. Carroll , Dale E. Cillessen , Anthony Garland , Timothy J. Ruggles , Kyle L. Johnson , Brad L. Boyce
{"title":"Near-surface microstructures convolute mechanical properties in additively manufactured metals","authors":"Kaitlynn M. Fitzgerald , Jay D. Carroll , Dale E. Cillessen , Anthony Garland , Timothy J. Ruggles , Kyle L. Johnson , Brad L. Boyce","doi":"10.1016/j.addma.2024.104477","DOIUrl":null,"url":null,"abstract":"<div><div>Kovar specimens were additively manufactured with 180 variations in process conditions. Three distinct geometries (two tensile geometries and a Charpy specimen) were evaluated for each set of process conditions. Tensile specimens additively manufactured to net shape had less porosity, more uniform material properties, higher average ductility, and they consistently failed via ductile rupture. Tensile specimens harvested via electric discharge machining from larger additively manufactured blocks often contained lack of fusion voids throughout the cross section - those pre-existing pores drove pre-mature failure. As-printed specimens, on the other hand, were more representative of the outer border properties rather than the interior of large printed parts. The properties of the specimens cut from the larger block of additively manufactured material were more representative of the inner hatch properties but were stochastic, depending on the size and location of present voids. Using a high-throughput methodology, the results from over 800 tensile tests are reported here. This extensive statistical sampling allows the effects of specimen type and location to be clearly distinguished from other intentional variables (process parameter variations) and stochastic material variability.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104477"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005232","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Kovar specimens were additively manufactured with 180 variations in process conditions. Three distinct geometries (two tensile geometries and a Charpy specimen) were evaluated for each set of process conditions. Tensile specimens additively manufactured to net shape had less porosity, more uniform material properties, higher average ductility, and they consistently failed via ductile rupture. Tensile specimens harvested via electric discharge machining from larger additively manufactured blocks often contained lack of fusion voids throughout the cross section - those pre-existing pores drove pre-mature failure. As-printed specimens, on the other hand, were more representative of the outer border properties rather than the interior of large printed parts. The properties of the specimens cut from the larger block of additively manufactured material were more representative of the inner hatch properties but were stochastic, depending on the size and location of present voids. Using a high-throughput methodology, the results from over 800 tensile tests are reported here. This extensive statistical sampling allows the effects of specimen type and location to be clearly distinguished from other intentional variables (process parameter variations) and stochastic material variability.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.