AI-driven transcriptome profile-guided hit molecule generation

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Li, Yoshihiro Yamanishi
{"title":"AI-driven transcriptome profile-guided hit molecule generation","authors":"Chen Li,&nbsp;Yoshihiro Yamanishi","doi":"10.1016/j.artint.2024.104239","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mi>D</mi><mi>e</mi><mspace></mspace><mi>n</mi><mi>o</mi><mi>v</mi><mi>o</mi></math></span> generation of bioactive and drug-like hit molecules is a pivotal goal in computer-aided drug discovery. While artificial intelligence (AI) has proven adept at generating molecules with desired chemical properties, previous studies often overlook the influence of disease-specific cellular environments. This study introduces GxVAEs, a novel AI-driven deep generative model designed to produce hit molecules from transcriptome profiles using dual variational autoencoders (VAEs). The first VAE, ProfileVAE, extracts latent features from transcriptome profiles to guide the second VAE, MolVAE, in generating hit molecules. GxVAEs aim to bridge the gap between molecule generation and the biological context of disease, producing molecules that are biologically relevant within specific cellular environments or pathological conditions. Experimental results and case studies focused on hit molecule generation demonstrate that GxVAEs surpass current state-of-the-art methods, in terms of reproducibility of known ligands. This approach is expected to effectively find potential molecular structures with bioactivities across diverse disease contexts.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"338 ","pages":"Article 104239"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001759","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Denovo generation of bioactive and drug-like hit molecules is a pivotal goal in computer-aided drug discovery. While artificial intelligence (AI) has proven adept at generating molecules with desired chemical properties, previous studies often overlook the influence of disease-specific cellular environments. This study introduces GxVAEs, a novel AI-driven deep generative model designed to produce hit molecules from transcriptome profiles using dual variational autoencoders (VAEs). The first VAE, ProfileVAE, extracts latent features from transcriptome profiles to guide the second VAE, MolVAE, in generating hit molecules. GxVAEs aim to bridge the gap between molecule generation and the biological context of disease, producing molecules that are biologically relevant within specific cellular environments or pathological conditions. Experimental results and case studies focused on hit molecule generation demonstrate that GxVAEs surpass current state-of-the-art methods, in terms of reproducibility of known ligands. This approach is expected to effectively find potential molecular structures with bioactivities across diverse disease contexts.
人工智能驱动的转录组图谱引导的热门分子生成
重新生成具有生物活性的类药物分子是计算机辅助药物发现的一个关键目标。虽然人工智能(AI)已被证明擅长生成具有所需化学特性的分子,但以往的研究往往忽略了特定疾病细胞环境的影响。本研究介绍了 GxVAEs,这是一种新型的人工智能驱动深度生成模型,旨在利用双变异自动编码器(VAE)从转录组图谱生成命中分子。第一个VAE(ProfileVAE)从转录组图谱中提取潜在特征,以指导第二个VAE(MolVAE)生成命中分子。GxVAE旨在弥合分子生成与疾病生物学背景之间的差距,生成在特定细胞环境或病理条件下具有生物学相关性的分子。实验结果和案例研究表明,就已知配体的再现性而言,GxVAE 超越了目前最先进的方法。这种方法有望在各种疾病中有效地找到具有生物活性的潜在分子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信