{"title":"A weighted hybrid indoor positioning method based on path loss exponent estimation","authors":"Yiting Wang, Jingqi Fu, Yifan Cao","doi":"10.1016/j.adhoc.2024.103684","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the Internet of Things (IoT), location-based services (LBS) have gained significant attention due to their widespread applications in daily life. This paper addresses the indoor target positioning problem in wireless sensor networks (WSNs). A weighted constrained linear least squares algorithm based on path loss exponent estimation (PLE-WCLLS) with received signal strength (RSS) and angle of arrival (AoA) hybrid measurements is proposed. To address the challenges of unknown transmission power and path loss exponent (PLE), the proposed method employs a linear least squares (LLS) estimation approach based on the ranging maximum likelihood (ML) estimation model to estimate both parameters. Subsequently, a confidence weight adjustment strategy is designed to reduce positioning errors. To handle the highly non-convex and nonlinear nature of the RSS/AoA hybrid optimization model, a linearization method based on Taylor series expansion is presented. Accurate target position estimation is achieved by solving a constrained quadratic programming problem. The effectiveness of the proposed algorithm is validated through numerical simulations and experimental evaluation in a real indoor environment. Compared to traditional positioning methods, the PLE-WCLLS algorithm improves positioning accuracy by 13.2%, and it performs exceptionally well even in scenarios with fewer sensor nodes. This gives it broad application prospects in areas such as IoT device management, personnel tracking in smart buildings, and asset localization in industrial automation.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002956","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the Internet of Things (IoT), location-based services (LBS) have gained significant attention due to their widespread applications in daily life. This paper addresses the indoor target positioning problem in wireless sensor networks (WSNs). A weighted constrained linear least squares algorithm based on path loss exponent estimation (PLE-WCLLS) with received signal strength (RSS) and angle of arrival (AoA) hybrid measurements is proposed. To address the challenges of unknown transmission power and path loss exponent (PLE), the proposed method employs a linear least squares (LLS) estimation approach based on the ranging maximum likelihood (ML) estimation model to estimate both parameters. Subsequently, a confidence weight adjustment strategy is designed to reduce positioning errors. To handle the highly non-convex and nonlinear nature of the RSS/AoA hybrid optimization model, a linearization method based on Taylor series expansion is presented. Accurate target position estimation is achieved by solving a constrained quadratic programming problem. The effectiveness of the proposed algorithm is validated through numerical simulations and experimental evaluation in a real indoor environment. Compared to traditional positioning methods, the PLE-WCLLS algorithm improves positioning accuracy by 13.2%, and it performs exceptionally well even in scenarios with fewer sensor nodes. This gives it broad application prospects in areas such as IoT device management, personnel tracking in smart buildings, and asset localization in industrial automation.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.