Shuaifeng Chen , Guotao Zhang , Zhaochang Wang , Baohong Tong , Yanhong Sun , Deyu Tu
{"title":"The pinning characteristics of droplets and the self-repair mechanism of lubricating film on nanoporous surface: A molecular dynamics perspective","authors":"Shuaifeng Chen , Guotao Zhang , Zhaochang Wang , Baohong Tong , Yanhong Sun , Deyu Tu","doi":"10.1016/j.cherd.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>The nanoscale pore gives rich dynamic information to the flow behavior of the droplets exuded on the SLIPS (Smooth Liquid-Infused Porous Surface). The key to realizing fast self-healing of lubricating film is to understand the dynamic law of droplets at nano-orifice. In this paper, a dynamics model of the exudation and spreading behavior is established by the non-equilibrium molecular dynamics simulation. The characteristics and the mechanism of pinning and spreading of nano-droplets were studied. We found that adjusting the wettability and pore diameter can change the liquid exudation and the pinning time of droplets at the orifice. The weaker wettability and larger pore diameter both can increase the exudation velocity and reduce the pinning time of the droplets, which then improves the spreading of exuded droplets and the self-repairing efficiency of the damaged liquid film. As the pore diameter increases, the spreading area of the droplets on the surface of the pore increases. The increase in the wettability also facilitates the spreading behavior, but the outflow rate of the liquid from the pore decreases. Under the combined effect of the two factors, the spreading area of droplets first increases and then decreases with the wettability increases. The results provide potential insights into the spreading mechanism of nanodroplets on porous surfaces.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 367-378"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026387622400604X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The nanoscale pore gives rich dynamic information to the flow behavior of the droplets exuded on the SLIPS (Smooth Liquid-Infused Porous Surface). The key to realizing fast self-healing of lubricating film is to understand the dynamic law of droplets at nano-orifice. In this paper, a dynamics model of the exudation and spreading behavior is established by the non-equilibrium molecular dynamics simulation. The characteristics and the mechanism of pinning and spreading of nano-droplets were studied. We found that adjusting the wettability and pore diameter can change the liquid exudation and the pinning time of droplets at the orifice. The weaker wettability and larger pore diameter both can increase the exudation velocity and reduce the pinning time of the droplets, which then improves the spreading of exuded droplets and the self-repairing efficiency of the damaged liquid film. As the pore diameter increases, the spreading area of the droplets on the surface of the pore increases. The increase in the wettability also facilitates the spreading behavior, but the outflow rate of the liquid from the pore decreases. Under the combined effect of the two factors, the spreading area of droplets first increases and then decreases with the wettability increases. The results provide potential insights into the spreading mechanism of nanodroplets on porous surfaces.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.