L. Kotsedi , A. Abdelmalek , V. Bharadwaj , C.B. Mtshali , Z.Y. Nuru , B. Sotillo , G. Coccia , S.M. Eaton , R. Ramponi , E.H. Amara , M. Maaza
{"title":"Optical and microstructural studies of femtosecond laser treated amorphous germanium thin coatings","authors":"L. Kotsedi , A. Abdelmalek , V. Bharadwaj , C.B. Mtshali , Z.Y. Nuru , B. Sotillo , G. Coccia , S.M. Eaton , R. Ramponi , E.H. Amara , M. Maaza","doi":"10.1016/j.optmat.2024.116290","DOIUrl":null,"url":null,"abstract":"<div><div>The study of the relaxation mechanism of amorphous germanium after femtosecond laser irradiation is presented in this work. In particular, a thin germanium coating was deposited onto a glass substrate through the electron beam vacuum coating method. The substrate was kept at room temperature during the coating process, which resulted in a deposited layer characterized by an amorphous microstructure, as observed from the X-ray diffraction. The germanium layer was then irradiated with a femtosecond laser at 1030 nm wavelength, while varying the net fluence from 15 J cm<sup>−2</sup> to 90 J cm<sup>−2</sup>. Moreover, an extended two temperature model was used to extract the electronic and lattice temperature of the laser heated germanium coating, showing a 32 % contribution from heating due to the thermal accumulation effect. The microstructural and morphological studies of the irradiated samples were carried out using θ-2θ X-ray diffraction and high-resolution scanning electron microscopy. From the X-ray diffraction results, it was observed that at higher laser fluence there is an emergence of crystallinity on the germanium layer, with no evidence of oxidation. On the surface, the morphology was observed to evolve to granular sphere, attributed to melting of the material. Finally, an increase in absorbance with laser fluence was observed and the optical band gap of the coating was calculated.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116290"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the relaxation mechanism of amorphous germanium after femtosecond laser irradiation is presented in this work. In particular, a thin germanium coating was deposited onto a glass substrate through the electron beam vacuum coating method. The substrate was kept at room temperature during the coating process, which resulted in a deposited layer characterized by an amorphous microstructure, as observed from the X-ray diffraction. The germanium layer was then irradiated with a femtosecond laser at 1030 nm wavelength, while varying the net fluence from 15 J cm−2 to 90 J cm−2. Moreover, an extended two temperature model was used to extract the electronic and lattice temperature of the laser heated germanium coating, showing a 32 % contribution from heating due to the thermal accumulation effect. The microstructural and morphological studies of the irradiated samples were carried out using θ-2θ X-ray diffraction and high-resolution scanning electron microscopy. From the X-ray diffraction results, it was observed that at higher laser fluence there is an emergence of crystallinity on the germanium layer, with no evidence of oxidation. On the surface, the morphology was observed to evolve to granular sphere, attributed to melting of the material. Finally, an increase in absorbance with laser fluence was observed and the optical band gap of the coating was calculated.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.