Microwave fostered sustainable synthesis of Nb2O5 – ZnO nanomaterial for efficiency amplification in high performing energy systems

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Isaac Abrahams , Adel El-marghany
{"title":"Microwave fostered sustainable synthesis of Nb2O5 – ZnO nanomaterial for efficiency amplification in high performing energy systems","authors":"Shaan Bibi Jaffri ,&nbsp;Khuram Shahzad Ahmad ,&nbsp;Isaac Abrahams ,&nbsp;Adel El-marghany","doi":"10.1016/j.optmat.2024.116304","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the first report on the microwave approach combined with improved sustainable synthesis of zinc oxide (ZnO) and niobium oxide (Nb<sub>2</sub>O<sub>5</sub>) to generate Nb<sub>2</sub>O5 – ZnO nanospheres. Following the development of nanospheres, the band gap energy decreased to 3.25 eV, and the average crystallite size was found to be 62.49 nm. The nanospheres had a mixed crystalline phase of hexagonal and orthogonal crystals. This material has demonstrated a predisposition towards hydrogen production in the electro-catalytic tests, with a minimal overpotential (η<sub>HER</sub>) and a Tafel slope values of 127 mV and 125.6 mV dec<sup>−1</sup>. Furthermore, nanospheres decorated electrode remained intact in electrolyte environment for 1500 min and exhibited profound charge storage of 204.93 F g<sup>−1</sup> 15 % PV efficiency was attained by the air-processed perovskite solar cell thanks to the interface passivation functionality. The commendable performance of the binary Nb<sub>2</sub>O<sub>5</sub> – ZnO nanospheres have validated their prospects for practical applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116304"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014873","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the first report on the microwave approach combined with improved sustainable synthesis of zinc oxide (ZnO) and niobium oxide (Nb2O5) to generate Nb2O5 – ZnO nanospheres. Following the development of nanospheres, the band gap energy decreased to 3.25 eV, and the average crystallite size was found to be 62.49 nm. The nanospheres had a mixed crystalline phase of hexagonal and orthogonal crystals. This material has demonstrated a predisposition towards hydrogen production in the electro-catalytic tests, with a minimal overpotential (ηHER) and a Tafel slope values of 127 mV and 125.6 mV dec−1. Furthermore, nanospheres decorated electrode remained intact in electrolyte environment for 1500 min and exhibited profound charge storage of 204.93 F g−1 15 % PV efficiency was attained by the air-processed perovskite solar cell thanks to the interface passivation functionality. The commendable performance of the binary Nb2O5 – ZnO nanospheres have validated their prospects for practical applications.

Abstract Image

微波促进可持续合成 Nb2O5 - ZnO 纳米材料,提高高性能能源系统的效率
本研究首次报道了微波法结合改进的氧化锌(ZnO)和氧化铌(Nb2O5)可持续合成法生成 Nb2O5 - ZnO 纳米球。纳米球形成后,带隙能下降到 3.25 eV,平均结晶尺寸为 62.49 nm。纳米球具有六方晶系和正交晶系的混合晶相。这种材料在电催化测试中表现出了制氢倾向,过电位(ηHER)最小,塔菲尔斜率值分别为 127 mV 和 125.6 mV dec-1。此外,纳米球装饰的电极在电解质环境中可保持 1500 分钟不变,并显示出 204.93 F g-1 的高电荷存储能力。由于界面钝化功能,空气处理过氧化物太阳能电池实现了 15% 的光伏效率。二元 Nb2O5 - ZnO 纳米球的出色性能验证了它们的实际应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信