Multi-cation doped CuCrO2 crystallite matrix: Exploring bandgap tunability through Ni-Zn and Ni-Zn-Mg doping for optoelectronic application

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jamshina Sanam P.K. , Midhun Shah , P.P. Pradyumnan
{"title":"Multi-cation doped CuCrO2 crystallite matrix: Exploring bandgap tunability through Ni-Zn and Ni-Zn-Mg doping for optoelectronic application","authors":"Jamshina Sanam P.K. ,&nbsp;Midhun Shah ,&nbsp;P.P. Pradyumnan","doi":"10.1016/j.optmat.2024.116283","DOIUrl":null,"url":null,"abstract":"<div><div>Bandgap tuning is a key approach to optimizing materials for advanced technologies, enabling the development of more efficient and specialized devices. In this study, we demonstrate the tunability of the bandgap of CuCrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> from 2.38 to 4.37 eV via single cation-doping with Ni and Zn, and multi-cation doping with Ni-Zn and Ni-Zn-Mg. XRD analysis reveals structural changes due to lattice distortions by cationic substitution, while FESEM shows the impact of doping on particle size, surface morphology, and crystallinity. The lamellar structure observed with multi-cation doping in FESEM investigations indicates increased structural disorder and defects, causing tailing above the valence band and below the conduction band, significantly reducing the bandgap. The effect of Zn-Ni doping on the lattice is reversed with Mg<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> insertion due to p-p orbital interactions between Mg<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>-O, replacing the d-p interaction in the Cr<sup>3+</sup>-O bond, as confirmed by optical studies. UV–Vis and photoluminescence analyses reveal significant shifts in bandgaps and emission spectra, with Ni doping yielding a bandgap of 3.97 eV, Zn doping 3.16 eV, Zn-Ni doping expanding it to 4.37 eV, and Zn-Ni-Mg doping reducing it to 2.38 eV. The dopants also affect emission characteristics, including band edge and deep-level emissions. This study provides valuable insights into the relationship between cationic doping and material properties, guiding the design of CuCrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-based materials with tailored functionalities.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116283"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014666","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bandgap tuning is a key approach to optimizing materials for advanced technologies, enabling the development of more efficient and specialized devices. In this study, we demonstrate the tunability of the bandgap of CuCrO2 from 2.38 to 4.37 eV via single cation-doping with Ni and Zn, and multi-cation doping with Ni-Zn and Ni-Zn-Mg. XRD analysis reveals structural changes due to lattice distortions by cationic substitution, while FESEM shows the impact of doping on particle size, surface morphology, and crystallinity. The lamellar structure observed with multi-cation doping in FESEM investigations indicates increased structural disorder and defects, causing tailing above the valence band and below the conduction band, significantly reducing the bandgap. The effect of Zn-Ni doping on the lattice is reversed with Mg2+ insertion due to p-p orbital interactions between Mg2+-O, replacing the d-p interaction in the Cr3+-O bond, as confirmed by optical studies. UV–Vis and photoluminescence analyses reveal significant shifts in bandgaps and emission spectra, with Ni doping yielding a bandgap of 3.97 eV, Zn doping 3.16 eV, Zn-Ni doping expanding it to 4.37 eV, and Zn-Ni-Mg doping reducing it to 2.38 eV. The dopants also affect emission characteristics, including band edge and deep-level emissions. This study provides valuable insights into the relationship between cationic doping and material properties, guiding the design of CuCrO2-based materials with tailored functionalities.
多阳离子掺杂的 CuCrO2 晶胞基质:通过掺杂 Ni-Zn 和 Ni-Zn-Mg 探索光电应用的带隙可调性
带隙调谐是优化先进技术材料的一种关键方法,它有助于开发更高效、更专业的器件。在本研究中,我们通过掺杂镍和锌的单阳离子以及掺杂镍锌和镍锌镁的多阳离子,证明了 CuCrO2 的带隙可从 2.38 eV 调整到 4.37 eV。XRD 分析显示了阳离子取代导致的晶格畸变所带来的结构变化,而 FESEM 则显示了掺杂对粒度、表面形态和结晶度的影响。在 FESEM 研究中观察到的多阳离子掺杂的片状结构表明,结构无序和缺陷增加,导致价带上方和导带下方出现拖尾现象,从而显著降低了带隙。光学研究证实,由于 Mg2+-O 之间的 p-p 轨道相互作用取代了 Cr3+-O 键中的 d-p 相互作用,插入 Mg2+ 后 Zn-Ni 掺杂对晶格的影响发生了逆转。紫外-可见光和光致发光分析表明,带隙和发射光谱发生了显著变化,掺杂镍后带隙为 3.97 eV,掺杂锌后带隙为 3.16 eV,掺杂锌-镍后带隙扩大到 4.37 eV,掺杂锌-镍-镁后带隙减小到 2.38 eV。掺杂剂还影响发射特性,包括带边和深层发射。这项研究为了解阳离子掺杂与材料特性之间的关系提供了宝贵的见解,为设计具有定制功能的基于 CuCrO2 的材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信