Resource utilization strategy of Fe-bearing smelting slag in China: A review

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL
{"title":"Resource utilization strategy of Fe-bearing smelting slag in China: A review","authors":"","doi":"10.1016/j.mineng.2024.109066","DOIUrl":null,"url":null,"abstract":"<div><div>In China’s rapid development, the metallurgy industry plays a pivotal role. However, the processing and utilization of iron ore results in the production of a significant amount of iron-bearing smelting slags. Iron-bearing smelting slags contains iron, zinc, copper, calcium, potassium, and other metal elements. Challenges in processing technology and cost control in smelting enterprises contribute to the slag stockpile issue, leading to significant pollution of the surrounding environment and groundwater resources, and resulting in the underutilization of metal resources in iron-bearing smelting slags. This paper identifies the sources and hazards of iron-bearing smelting slag, delves into resourceful strategies for its comprehensive utilization, such as metal recycling technology and new building materials, summarizes various treatment processes, and employs reaction thermodynamics software to calculate the Gibbs free energy (<em>ΔG<sup>θ</sup></em>) of potential chemical reactions in the slag. This analysis helps elucidate the evolution of iron-bearing phases. Additionally, it examines the role of additives (CaO) in the reduction process of non-ferrous smelting slags and seeks to uncover the factors limiting their industrial application.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In China’s rapid development, the metallurgy industry plays a pivotal role. However, the processing and utilization of iron ore results in the production of a significant amount of iron-bearing smelting slags. Iron-bearing smelting slags contains iron, zinc, copper, calcium, potassium, and other metal elements. Challenges in processing technology and cost control in smelting enterprises contribute to the slag stockpile issue, leading to significant pollution of the surrounding environment and groundwater resources, and resulting in the underutilization of metal resources in iron-bearing smelting slags. This paper identifies the sources and hazards of iron-bearing smelting slag, delves into resourceful strategies for its comprehensive utilization, such as metal recycling technology and new building materials, summarizes various treatment processes, and employs reaction thermodynamics software to calculate the Gibbs free energy (ΔGθ) of potential chemical reactions in the slag. This analysis helps elucidate the evolution of iron-bearing phases. Additionally, it examines the role of additives (CaO) in the reduction process of non-ferrous smelting slags and seeks to uncover the factors limiting their industrial application.

Abstract Image

中国含铁冶炼渣的资源利用战略:综述
在中国的快速发展中,冶金工业发挥着举足轻重的作用。然而,在铁矿石的加工和利用过程中,会产生大量的含铁冶炼渣。含铁冶炼渣中含有铁、锌、铜、钙、钾等金属元素。冶炼企业在加工技术和成本控制方面面临的挑战造成了矿渣堆放问题,导致周边环境和地下水资源受到严重污染,并造成含铁冶炼渣中的金属资源未得到充分利用。本文指出了含铁冶炼渣的来源和危害,深入探讨了其综合利用的资源化策略,如金属回收技术和新型建筑材料,总结了各种处理工艺,并利用反应热力学软件计算了渣中潜在化学反应的吉布斯自由能(ΔGθ)。这项分析有助于阐明含铁相的演变过程。此外,它还研究了添加剂(氧化钙)在有色金属冶炼渣还原过程中的作用,并试图揭示限制其工业应用的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信