Lindsay Grandy , Robert Lacasse , Jonathan Ralph Adsetts , Christophe Hitz , Danny Chhin , Janine Mauzeroll
{"title":"Observation of natural convection and particle ejection from stainless steel single pits","authors":"Lindsay Grandy , Robert Lacasse , Jonathan Ralph Adsetts , Christophe Hitz , Danny Chhin , Janine Mauzeroll","doi":"10.1016/j.corsci.2024.112518","DOIUrl":null,"url":null,"abstract":"<div><div>Single pits were visually and electrochemically followed during their growth on a S41500 martensitic SS microelectrode. Solid particles were observed ejecting from the growing pit and after extraction, EDX determined they were mostly iron-based hydroxides/oxides. These particles were carried by fluid flow originating from the pit at a velocity of 21 μm/s. Finite element modeling confirmed the observed flow speeds are achievable by natural convection due to metal ion density gradients. While the pit solution does not experience flow, the bulk solution pH was observed to decrease illustrating how natural convection affects the bulk solution chemistry.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112518"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007133","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single pits were visually and electrochemically followed during their growth on a S41500 martensitic SS microelectrode. Solid particles were observed ejecting from the growing pit and after extraction, EDX determined they were mostly iron-based hydroxides/oxides. These particles were carried by fluid flow originating from the pit at a velocity of 21 μm/s. Finite element modeling confirmed the observed flow speeds are achievable by natural convection due to metal ion density gradients. While the pit solution does not experience flow, the bulk solution pH was observed to decrease illustrating how natural convection affects the bulk solution chemistry.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.