Investigation of contact ratio and dynamic characteristics of non-circular planetary gear train in hydraulic motor

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yongping Liu , Linyue Wu , Changbin Dong
{"title":"Investigation of contact ratio and dynamic characteristics of non-circular planetary gear train in hydraulic motor","authors":"Yongping Liu ,&nbsp;Linyue Wu ,&nbsp;Changbin Dong","doi":"10.1016/j.flowmeasinst.2024.102720","DOIUrl":null,"url":null,"abstract":"<div><div>As a basic component of the non-circular gear hydraulic motor (NGHM), the non-circular planetary gear train (NPGT) offers a number of advantages, including low velocity, high output torque and compact design. Two different types of NPGT pitch curves have been designed using the 4–6 type of NGHM as an example. Aiming at two kinds of pitch curves, the contact ratio solution methods for the planetary gear meshing respectively with the sun gear and the inner gear ring are proposed. A comparative analysis of an integrated pitch curve design and a segmented pitch curve design is conducted to evaluate the effects of varying addendum coefficient (AC) and tool tooth profile angle (TTPA) on the contact ratio. Furthermore, the influence of load, velocity, and contact ratio on the dynamic characteristics (DC) of the NPGT with a segmented pitch curve is investigated through dynamic simulation. The results show that AC and TTPA significantly affect the contact ratio, with an increase in contact ratio observed as TTPA decreases and AC increases. Additionally, the load has a notable impact on the dynamic meshing force and its fluctuation. A higher contact ratio is associated with greater transmission stability in the gear train. This study provides a theoretical foundation for the design and optimization of NGHMs, and expands the potential application of contact ratio effects on NPGTs in this field.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102720"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624002000","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a basic component of the non-circular gear hydraulic motor (NGHM), the non-circular planetary gear train (NPGT) offers a number of advantages, including low velocity, high output torque and compact design. Two different types of NPGT pitch curves have been designed using the 4–6 type of NGHM as an example. Aiming at two kinds of pitch curves, the contact ratio solution methods for the planetary gear meshing respectively with the sun gear and the inner gear ring are proposed. A comparative analysis of an integrated pitch curve design and a segmented pitch curve design is conducted to evaluate the effects of varying addendum coefficient (AC) and tool tooth profile angle (TTPA) on the contact ratio. Furthermore, the influence of load, velocity, and contact ratio on the dynamic characteristics (DC) of the NPGT with a segmented pitch curve is investigated through dynamic simulation. The results show that AC and TTPA significantly affect the contact ratio, with an increase in contact ratio observed as TTPA decreases and AC increases. Additionally, the load has a notable impact on the dynamic meshing force and its fluctuation. A higher contact ratio is associated with greater transmission stability in the gear train. This study provides a theoretical foundation for the design and optimization of NGHMs, and expands the potential application of contact ratio effects on NPGTs in this field.
液压马达中非圆形行星齿轮系接触比和动态特性的研究
作为非圆齿轮液压马达(NGHM)的基本组件,非圆行星齿轮系(NPGT)具有速度低、输出扭矩大和设计紧凑等诸多优点。我们以 4-6 型 NGHM 为例,设计了两种不同类型的 NPGT 节距曲线。针对这两种节距曲线,提出了行星齿轮分别与太阳齿轮和内齿圈啮合的接触比求解方法。对综合节距曲线设计和分段节距曲线设计进行了对比分析,以评估不同增量系数(AC)和刀具齿廓角(TTPA)对接触比的影响。此外,还通过动态模拟研究了载荷、速度和接触比对采用分段节距曲线的 NPGT 动态特性 (DC) 的影响。结果表明,AC 和 TTPA 对接触比有显著影响,随着 TTPA 的减小和 AC 的增大,接触比会增大。此外,载荷对动态啮合力及其波动也有显著影响。接触比越大,齿轮系的传动稳定性就越高。这项研究为 NGHM 的设计和优化提供了理论基础,并拓展了接触比效应在 NPGT 领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow Measurement and Instrumentation
Flow Measurement and Instrumentation 工程技术-工程:机械
CiteScore
4.30
自引率
13.60%
发文量
123
审稿时长
6 months
期刊介绍: Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions. FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest: Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible. Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems. Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories. Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信