Fangrong Zhang , Lei Zhang , Jiqi Wang , Baoliang Zhang
{"title":"Thickness-controlled HsGDY/N-doped double-shell hollow carbon tubes for broadband high-performance microwave absorption","authors":"Fangrong Zhang , Lei Zhang , Jiqi Wang , Baoliang Zhang","doi":"10.1016/j.carbon.2024.119740","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing deterioration of the electromagnetic environment, it is important to develop new and efficient electromagnetic wave-absorbing materials. In this work, bilayer hollow HsGDY/NC nanotubes with controllable thickness are constructed by introducing high conductivity polydopamine (PDA) and hydrogen-substituted graphdiyne (HsGDY) followed by the etching and carbonization. Subsequently, the effects of the composition, coating order, and structural characteristics of nanotubes on the electromagnetic parameters are thoroughly investigated, thereby analyzing the microwave absorption mechanism. The impedance matching of HsGDY/NC is optimized by changing the thickness of NC layer, while utilizing unique multi-heterogeneous interfaces and hierarchical conductive structures that enhance the interface polarization and conductive loss. As a result, HsGDY@NC-3 displays the optimal absorbing performance with an effective absorption bandwidth (EAB) of 7.8 GHz (10.1–17.9 GHz) and a minimum reflection loss (RL<sub>min</sub>) of −47.18 dB at the filler content of only 11 %. This work broadens the application scopes of HsGDY and provides a novel insight into the design of lightweight, high-efficiency, and wide-frequency microwave absorbers, which is expected to be a potentially effective microwave-absorbing material.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"231 ","pages":"Article 119740"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232400959X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing deterioration of the electromagnetic environment, it is important to develop new and efficient electromagnetic wave-absorbing materials. In this work, bilayer hollow HsGDY/NC nanotubes with controllable thickness are constructed by introducing high conductivity polydopamine (PDA) and hydrogen-substituted graphdiyne (HsGDY) followed by the etching and carbonization. Subsequently, the effects of the composition, coating order, and structural characteristics of nanotubes on the electromagnetic parameters are thoroughly investigated, thereby analyzing the microwave absorption mechanism. The impedance matching of HsGDY/NC is optimized by changing the thickness of NC layer, while utilizing unique multi-heterogeneous interfaces and hierarchical conductive structures that enhance the interface polarization and conductive loss. As a result, HsGDY@NC-3 displays the optimal absorbing performance with an effective absorption bandwidth (EAB) of 7.8 GHz (10.1–17.9 GHz) and a minimum reflection loss (RLmin) of −47.18 dB at the filler content of only 11 %. This work broadens the application scopes of HsGDY and provides a novel insight into the design of lightweight, high-efficiency, and wide-frequency microwave absorbers, which is expected to be a potentially effective microwave-absorbing material.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.