Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hasanen A. Hammad , Manuel De la Sen
{"title":"Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses","authors":"Hasanen A. Hammad ,&nbsp;Manuel De la Sen","doi":"10.1016/j.aej.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the existence and approximate controllability (ACA) of fractional neutral-type stochastic differential inclusions (NTSDIs) characterized by non-instantaneous impulses within a separable Hilbert space (HS) framework. Employing the Atangana–Baleanu–Caputo (ABC) derivative, we transform the system into an equivalent fixed-point (FP) problem through an integral operator. Subsequently, the Bohnenblust–Karlin FP theorem is leveraged to establish existence results. By assuming ACA of the corresponding linear system, we derive sufficient conditions for the ACA of the nonlinear stochastic impulsive control system. Our analysis relies on concepts from stochastic analysis, fractional calculus, FP theory, semigroup theory, and the theory of multivalued maps (MVMs). The theoretical findings are illustrated through a concrete example.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 306-328"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824011736","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the existence and approximate controllability (ACA) of fractional neutral-type stochastic differential inclusions (NTSDIs) characterized by non-instantaneous impulses within a separable Hilbert space (HS) framework. Employing the Atangana–Baleanu–Caputo (ABC) derivative, we transform the system into an equivalent fixed-point (FP) problem through an integral operator. Subsequently, the Bohnenblust–Karlin FP theorem is leveraged to establish existence results. By assuming ACA of the corresponding linear system, we derive sufficient conditions for the ACA of the nonlinear stochastic impulsive control system. Our analysis relies on concepts from stochastic analysis, fractional calculus, FP theory, semigroup theory, and the theory of multivalued maps (MVMs). The theoretical findings are illustrated through a concrete example.
具有非瞬时脉冲的分数随机积分微分夹杂的温和解的存在性和近似可控性
本文在可分离的希尔伯特空间(HS)框架内研究了以非瞬时脉冲为特征的分数中性型随机微分夹杂(NTSDI)的存在性和近似可控性(ACA)。利用阿坦加纳-巴莱亚努-卡普托(ABC)导数,我们通过积分算子将系统转化为等效定点(FP)问题。随后,我们利用 Bohnenblust-Karlin FP 定理建立了存在性结果。通过假设相应线性系统的 ACA,我们得出了非线性随机脉冲控制系统 ACA 的充分条件。我们的分析依赖于随机分析、分数微积分、FP 理论、半群理论和多值映射(MVM)理论中的概念。我们将通过一个具体实例来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信